期刊文献+

二十面体网格和经纬网格全球模式在中国区域模拟效果对比 被引量:3

Global mode simulation results comparison between icosahedron spherical mesh and latitude-longitude mesh in China
下载PDF
导出
摘要 为了评估二十面体网格全球模式MPAS和经纬网格全球模式WRF在中国区域的模拟效果,对比了两模式对2010年10月23—28日中国区域的涡度场、降水场、高度场和温度场的模拟效果,结果表明:在30和60 km准均匀模拟下,MPAS和WRF模式对中国区域500 h Pa高度处涡度场的模拟效果都比较好,但都难以模拟出局地的涡度极值中心,两模式模拟效果相当;从第3天的日累积降水的模拟结果来看,两模式基本都能模拟出降水分布情况,MPAS模式模拟结果整体要优于WRF,WRF对降水中心的模拟要优于MPAS;MPAS对高层高度场和温度场的模拟较好,WRF对中、低层的模拟较好,且WRF的预报时效性比MPAS长;网格分辨率的提高对MPAS模式模拟效果的改善不大,而WRF模式的模拟效果得到了提高. To assess the simulation effects of MPAS with icosahedral mesh and WRF with latitude?longitude mesh in global modes, thesimulated vorticity, precipitation, height and temperature from thesetwo models in China from October 23,2010 to October 28,2010 were compared.Results show that both the MPAS and WRF simulate the vor?ticity at 500 hPa with good effects under 30 km and 60 km resolutions,yet none of them can accuratelysimulatethe extreme value centers of vorticity.From the simulation results of the accumulated precipitation at the 4th day,both the MPAS and WRF can simulate the rainfall distribution,and MPAS is superior to WRF in general simulation re?sult,while WRF is superior to MPAS in precipitation value centers simulation.MPAS works well for height and tem?perature fields at upper level;while WRF is good for those at middle and low level,and long in forecast validity pe?riod than MPAS.The increase of mesh resolution improves the simulation effect of WRF,and affects little on MPAS simulation.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2016年第2期146-151,共6页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(41175089)
关键词 中国区域 二十面体网格 经纬网格 China icosahedral mesh latitude-longitude mesh
  • 相关文献

参考文献12

  • 1Skamarock W C ,Klemp J B,Dudhia J, et al.A description of the advanced research WRF version 3 [ R] .NCAR Tech- nical Note, NCAR/TN-475+STR, 2008.
  • 2Nickovic S, Gavrilov M B, Tosie I A. Geostrophic adjust- ment on Hexagonalgrids [ J] . Mon Wea Rev, 2002, 130 (3) :668-683.
  • 3Beljaars A C. Numerical schemes for parameterizations [ C ] ff Proceedings of ECMWF Seminar on Numerical Methods in Atmospheric Models, 1991,2-1-42.
  • 4Majewski D, Liermann D, Prohl P, et al.The operational global icosahedral hexagonal gridpoint model GME:De- scription and high-resolution tests [ J ]. Mon Wea Rev, 2002,130(2) :319-338.
  • 5刘宇迪,崔新东,艾细根.全球大气数值模式动力框架研究进展[J].气象科技,2014,42(1):1-12. 被引量:5
  • 6Skamarock W C, Klemp J B, DudaM G, et al.A multiscale nonhydrostaticatmospheric model using centroidal voronoitesselations and C-grid staggering [ J ]. Mon WeaRev, 2012,140 (9) : 3090-3096.
  • 7Ju L L, Ringler T, Gunzburger M. Voronoi tessellations and their application to climate and global modeling [ J ]. Lecture Notes in Computational Science and Engineering, 2011,80:313-342.
  • 8Thuburn J, Ringler T, Skamarock W C, et al. Numerical representation ofgeostrophic modes on arbitrarily structured C-grid [ J ]. Journal of Computational Physics, 2009,228(22) :8321-8335.
  • 9Park S-H, Klemp J B, Skamarock W C.A comparison of mesh refinement in the global MPAS-A and WRF models using an idealized normal-mode baroclinic wave simulation[ J] .Mon Wea Rev,2014,142(10) :3614-3634.
  • 10Rauscher S A, Ringler T. Impact of variable-resolution mesheson midlatitude baroclinic eddies using CAM- MPAS-A [ J ]. Mon Wea Rev, 2014,142 ( 11 ) : 4256-4268.

二级参考文献60

  • 1Eliasen E, Machenhauer B, Rasmussen E. On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields [R]. Report No. 2, Institute for Teoretisk Meteorologi, University of Co penhagen, 1970 : 74pp.
  • 2Machenhauer B. The spectral method [R]//Kasahara A. Nu merical Methods Used in Atmospheric Models, Vol. 2 GARP Publications Series No 17, WMO and ICSU, Geneva 1979: 121- 275.
  • 3Dennis J, Edwards J, Katherine J, et al. CAM-SE: A scalable spectral element dynamical core for the Community Atmos phere Model [J]. lnt J High Perform Comput Appl, 2012, 26 : 74-89.
  • 4Neale R B, Chen C, Gettelman A, et al. Description of the NCAR Community Atmosphere Model (CAM 5.0) [R]. NCARTech. Note NCAR/TN486+STR, 2010:268.
  • 5Kim J E, Hong S Y. A global atmospheric analysis data set downscaled from the NCIdP-DOE reanalysis [J]. J Climate, 2012, 25:2527-2534.
  • 6Harris L M, Lin S J. A Two-way nested global regional dy- namical core on the cubed sphere grid [J]. Mon Wea Rca, 2013, 141:283-305.
  • 7Ullrich P A, Jabionowski C. MCore: A nonhydrostatic atmos- pheric dynamical core utilizing high order finite-volume meth- ods [J]. J Comp Phys, 2012, 231(15): 5078-5108.
  • 8Medvigy D, Walko R L, Otte M J, et al. The Ocean I.and At- mosphere Model (OLAM): Optimization and evaluation of simulated radiative fluxes and precipitation [J]. Mon Wca Rev, 2010, 138:1923-1939.
  • 9Augenbaum J M, Peskin C S. On the construction of the Voronoi meth on the sphere [J]. J Comp Phys, 2010, 59:177.
  • 10Skamarock W C, Klemp J B, Duda M G,et al. A muhi-scale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C grid Staggering [J]. Mon Wea Rev, 2012, 240:3090-3105.

共引文献4

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部