期刊文献+

铁酸锰纳米材料吸附含Ni^(2+)电镀废水的性能研究 被引量:4

Adsorption performance of manganese ferrite nanomaterial on Ni^(2+)-containing electroplating wastewater
下载PDF
导出
摘要 采用非表面活性剂水热法制备了铁酸锰(MnFe2O4)纳米材料吸附剂,研究了吸附时间、溶液pH和温度对MnFe2O4纳米材料吸附模拟含Ni 2+电镀废水和实际含Ni 2+电镀废水中重金属Ni 2+的吸附性能,并探讨了该材料的再生利用性能。结果表明,MnFe2O4纳米材料可有效吸附电镀废水中的Ni 2+,吸附平衡时间为600min。对20mg/L的模拟含Ni 2+电镀废水,投加4.5mg的的MnFe2O4纳米材料进行吸附处理,Ni 2+的吸附去除率高达98%左右;实际工程应用中,应保持电镀废水偏碱性、温度25℃;MnFe2O4纳米材料具有理想的再生利用性能,重复吸附5次后,吸附去除率仍可达82.24%,在实际废水处理中具有广阔的应用前景。 The manganese ferrite (MnFe2O4) nanomaterial was prepared by surfactant-free hydro-thermal method,and it was used as the adsorbent to treat the heavy metal of Ni2+ from electroplating wastewater. Its adsorption performance were investigated using simulated electroplating wastewater and real electroplating wastewater containing Ni2+ ,the effects of adsorption time, solution pH and temperature on the adsorption performance of MnFe2O4 and its recycle ability were researched. Results indicated that MnFe2O4 nanomaterial had good adsorption performance for the heavy metal of Ni2+ in electroplating wastewater. The adsorption equilibrium time was 600 min and its remov- al efficiency reached about 98% when 4.5 mg MnFe2 O4 nanomaterial was used in 20 mg/L simulated wastewater. In the treatment of real industrial wastewater,the wastewater should keep in basicity and at room temperature (25 ℃). MnFe2 O4 nanomaterial had ideal renewable adsorption properties,and its adsorption efficiency could reach 82.24% after 5 adsorptions,indicating broad application prospects in the practical wastewater treatment.
出处 《环境污染与防治》 CAS CSCD 北大核心 2016年第5期27-31,共5页 Environmental Pollution & Control
基金 江苏省环保科研课题(No.2015070)
关键词 铁酸锰 纳米材料 重金属 含Ni2+电镀废水 吸附 manganese ferrite nanomaterial heavy metal Ni2+ -containing electroplating wastewater adsorption
  • 相关文献

参考文献12

二级参考文献56

  • 1胡国军,赵素梅.丁二酮肟分光光度法测定硝酸镍生产废水中的镍[J].化学工程师,2005,19(1):30-32. 被引量:12
  • 2崔升,沈晓冬,林本兰.液相共沉淀法制备铁酸锰纳米粉[J].无机盐工业,2006,38(1):16-17. 被引量:4
  • 3Guibal E. Interactions of metal ions with chitosan-based sorbents : a review(J). Sep Purif Technol, 2004,8 : 43-74.
  • 4Paulino AT, Santos LB, Nozaki J. Removal of Pb^2+, Cu^2+, and Fe^3+ from battery manufacture waste water by chitosan produced from silkworm chrysalides as a low-cost adsorbent [J]. React Funct Polym,2008,68: 634-642.
  • 5Trimukhe KD, Varma AJ. A morphological study of heavy metal complexes of chitosan and crosslinked chitosans by SEM and WAXRD [J ].Carbohydr Polym, 2008,4: 698-702.
  • 6Miretzky P,Cirelli AF. Hg(Ⅱ) removal from water by chitosan and chitosan derivatives: a review[J]. J Hazard Mater, 2009,167:10-23.
  • 7Juang RS, Shao HJ. Effect of pH on competitive adsorption of Cu(Ⅱ), Ni(Ⅱ), and Zn(Ⅱ) from water onto ehitosan beads [ J ]. Adsorption, 2002, g : 71-78.
  • 8Paulino AT,Guilhenne MR,Reis AV,et al. Capacity of adsorption of Pb^2+ and Ni^2+ from solutions by chitosan produced from silkworm chrysalides in different degrees of deaeetylation [J]. J Hazard Mater,2007,147: 139-147.
  • 9Bailey SE, Olin TJ, Bricka RM. A review of potentially low cost adsorbents for heavy metals[J]. Water Res, 1999,33 : 2469-2479.
  • 10Zhong CG, Chen QY. Preparation of xanthate using alkaline effluent as alkali resource and lead removal from water[J]. Water Treat, 1995,10: 361-366.

共引文献41

同被引文献30

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部