期刊文献+

集成众核上快速独立成分分析降维并行算法 被引量:5

Parallel Algorithm of Fast Independent Component Analysis for Dimensionality Reduction on Many Integrated Core
下载PDF
导出
摘要 高光谱遥感影像快速独立成分分析(fast independent component analysis,FastICA)降维过程包含大规模矩阵计算及大量迭代计算.通过热点分析,面向集成众核(many integrated core,MIC)架构设计了协方差矩阵计算、白化处理和ICA迭代等热点并行方案,提出和实现一种M-FastICA并行降维算法,并构建算法性能模型;基于集成众核研究并行程序优化策略,针对各热点并行方案提出一系列优化策略,特别是创新性地提出一种下三角阵负载均衡方法,并量化测试其优化效果.实验结果显示M-FastICA算法最高可加速42倍,比24核CPU多线程并行快2.2倍;探讨了波段数与并行程序性能的关系;实验数据验证了算法性能模型的准确性. There are massive matrix and iterative calculations in fast independent component analysis (FastICA ) for hyperspectral image dimensionality reduction . By analyzing hotspots of FastICA algorithm ,we design the parallel schemes of covariance matrix calculating ,whitening processing and ICA iteration on many integrated core (MIC ) ,implement and validate an M-FastICA algorithm . Further ,we present a performance model for M-FastICA . We present a series of optimization methods for the parallel schemes of different hotspots : reforming the arithmetic operations , interchanging and unrolling loops ,transposing matrix ,using intrinsics and so on .In particular ,we propose a novel method to balance the loads when dealing with the lower triangular matrix .Then we measure the performance effects of such optimization methods .Our experiments show that the M-FastICA algorithm can reach a maximum speed-up of 42X times in our test ,and it runs 2 .2X times faster than the CPU parallel version on 24 cores .We also investigate how the speed-ups change with the bands .The experiment results validate our performance model with an acceptable accuracy and thus can provide a roofline for our optimization effort .
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第5期1136-1146,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61272146 41375113) 湖南省研究生创新资助项目(CX2015B030)~~
关键词 集成众核 独立成分分析 高光谱影像降维 性能模型 下三角阵负载均衡 many integrated core (MIC ) independent component analysis (ICA ) dimensionality reduction of hyperspectral image performance model load balancing of lower triangular matrix
  • 相关文献

参考文献19

  • 1Green R O. Eastwood M L. Sarture C M. et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometerf AVIRIS) [J]. Remote Sensing of Environment. 1998.65(3): 227-248.
  • 2Green A A. Berman M. Switzer P. et al. Atransformation for ordering multispectral data in terms of image quality with implications for noise removal [J]. IEEE Trans on Geoscience and Remote Sensing. 2000. 26(1): 65-74.
  • 3Kaarna A. Zemcik P. Kalviainen H. et al. Compression of multispectral remote sensing images using clustering and spectral reduction [J]. IEEE Trans on Geoscience and Remote Sensing. 2000. 38(2): 1073-1082.
  • 4Scott D W. Thompson J R. Probability density estimation in higher dimensions [C]//Proc of the 15th Symp on the Interface of Computer Science and Statistics. Amsterdam: North-Holland. 1983: 173-179.
  • 5Jolliffe I T. Principal Component Analysis [M]. Berlin: Springer. 2002.
  • 6Hyvarinen A. Oja E. Independent component analysis: Algorithm and applications[J]. Neural Networks. 2000. 13 (4/5): 411-430.
  • 7Tenenbaum J. De Silva V. Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science. 2000. 290(5500): 2319-2323.
  • 8Roweis ST. Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science. 2000. 290 (5500) : 2323-2326.
  • 9王和勇,郑杰,姚正安,李磊.基于聚类和改进距离的LLE方法在数据降维中的应用[J].计算机研究与发展,2006,43(8):1485-1490. 被引量:31
  • 10Jeffers J, Reinders J. Intel Xeon Phi Coprocessor High Performance Programming [M]. Amsterdam: Elsevier, 2013.

二级参考文献8

  • 1I T Jolliffe. Principal Component Analysis [M]. Berlin:Springer, 1986
  • 2B Scholkopf, A Smola, K R Muller. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5): 1299-1319
  • 3S Mika, G Ratsch, J Weston, et al. Fisher discriminant analysis with kernels [J]. Proceedings of IEEE Neural Networks for Signal Processing Workshop, 1999, 8(9) : 41-48
  • 4I Borg, P Groenen. Modern Multidimensional Scaling: Theory and Applications [ M ]. New York: Springer-Verlag, 1997
  • 5T Kohonen. The self-organizing map [J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480
  • 6J B Tenenbaum, Vin de Silva, C John. A global geometric framework for nonlinear dimensionality reduction [J]. Science,2000, 290:2319-2323
  • 7S T Roweis, L K Saul. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290:2323-2326
  • 8边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..

共引文献30

同被引文献44

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部