期刊文献+

基于广义回归神经网络的大跨度球面屋盖风荷载预测及其应用 被引量:11

Wind load prediction of large-span domes based on generalized regression neural network and its application
原文传递
导出
摘要 大跨度屋盖结构脉动风荷载特性复杂,一般需要通过风洞试验确定。典型屋盖的风洞试验数据的积累为相似体型屋盖结构风荷载取值提供了依据。为拓展典型屋盖风洞试验数据的应用范围,基于广义回归神经网络,结合典型球面屋盖系列风洞试验建立了大跨度球面屋盖的风荷载预测模型。其中,风荷载由平均风压系数、脉动风压系数、偏度、峰度、3个自功率谱密度参数(包括高频段衰减斜率、无量纲谱峰值和无量纲峰值频率)以及互功率谱密度相干指数8个特征参数描述。通过交叉验证和试算确定了广义回归神经网络模型中的平滑因子取值。以安庆电厂球面网壳结构为例进行了风荷载预测,通过对比预测风荷载与风洞试验得到的风振分析结果,验证了预测方法的可行性。 The distribution and fluctuation of wind load on large-span roofs are complicated. Wind load on typical roofs can be sometimes determined based on the wind tunnel tests carried out on roofs of similar shape. To expand the application scope of the test data, generalized regression neural network (GRNN) was introduced. The prediction models on large-span domes were given, where the wind load was expressed by eight parameters: mean, RMS, skewness, kurtosis of wind pressure coefficients, three auto-spectral parameters (including descendent slope in high frequency range, peak reduced spectrum and reduced peak frequency) and coherence exponent for cross-spectra. Cross validation and trials were carried out to determine the smooth factor in the GRNN model. The wind load prediction was applied on Anqing power plant dome. The wind-induced responses were calculated and compared with the results of wind tunnel tests. The results are very close. Therefore, it can be concluded that GRNN is feasible in predicting wind load on roof structures.
出处 《建筑结构学报》 EI CAS CSCD 北大核心 2016年第6期101-106,共6页 Journal of Building Structures
基金 国家自然科学基金面上项目(51478155 51278160 51378147)
关键词 大跨屋盖 风荷载预测 神经网络 风振响应 large-span roof wind load prediction neural network wind-induced response
  • 相关文献

参考文献11

  • 1PierreL M, Kopp G A, Surry D, Ho T. The UWO contribution to the NIST aerodynamic database for wind loads on low buildings : part 2 : comparison of data with wind load provisions [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 2005,93( 1 ) : 31-59.
  • 2Zhou Y, Kijewski T, Kareem A. Aerodynamic loads on tall buildings : an interactive database [ J ]. Journal of Strnctural Engineering, ASCE ,2003,129 ( 3 ) :394-404.
  • 3Uematsu Y, Tsurnishi R. Wind load evaluation system for the design of roof cladding of spherical domes [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96( 10/11 ): 2054-2066.
  • 4Chen Y, Kopp G A, Surry D. Interpolation of pressure time series in an aerodynamic database for low buildings [ J ]. Journal of Wind Engineering and Industrial Aerodynamics,2003, 91(6): 737-765.
  • 5Chert Y, Kopp G A, Surry D. Prediction of pressure coefficients on roofs of low buildings using artificial neural networks [ J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (3): 423-441.
  • 6傅继阳,谢壮宁,倪振华.大跨屋盖结构风压分布特性的模糊神经网络预测[J].建筑结构学报,2002,23(1):62-67. 被引量:17
  • 7Specht D F. A general regression neural network [ J ]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576.
  • 8Sun Ying, Qiu "Ye, Wu Yue. Modeling of wind pressure spectra on spherical domes [ J ] International Journal of Space Structures, 2013, 28 (2) : 87-99.
  • 9孙瑛,许楠,武岳.考虑特征湍流影响的体育场悬挑屋盖脉动风压谱模型[J].建筑结构学报,2010,31(10):24-33. 被引量:11
  • 10Ding Quanshun, Zhu Ledong, Xiang Haifan. An efficient ergodic simulation of multivariate stochastic process with spectral representation [ J ]. Probabilistic Engineering Mechanics ,2011, 26 (2) : 350-356.

二级参考文献31

  • 1王士同.神经模糊系统及其应用[M].北京:北京航空航天大学出版社,1997.265-307.
  • 2魏锦魁.深圳会议展览中心建筑设计国际竞标方案集[M].北京:中国建筑工业出版社,1999..
  • 3韩大建,曾宪武.佛山世纪莲体育中心张拉索膜结构找形分析、静力分析和风振动力分析报告[R].广州:华南理工大学城市建设研究中心,2005.
  • 4Holmes J D, Cochran L S. Probability distributions of extreme pressure coefficients [J]. Journal of Wind Engineering Industrial Aerodynamics, 2003, 91: 893- 901.
  • 5Winterstein S R. Nonlinear vibration models for extremes and fatigue [J]. Journal of Engineering Mechanics, 1988, 114(10): 1772- 1790.
  • 6Deodatis G. Simulation of ergodic multivariate stochastic processes [J]. Journal of Engineering Mechanics, 1996, 122(8): 778-787.
  • 7Sobczyk K, Trebicki J. Approximate probability distributions for stochastic systems: maximum entropy method [J]. Computational Methods in Applied Mechanics Engeering, 1999, 168: 91- 111.
  • 8Foshan Stadion, China: Windkanalversuche zur Ermittlung der quasistatischen und dynamischen Bemessungswindlasten fur die Haupttragstruktur und die Membraneindeckung der geplanten Uberdachung im Endausbauzustand des Stadions [R]. Birkenfeld, Germany: Wacker Ingenieure, April, 2004.
  • 9Stathopoulos T. PDF of wind pressures on low-rise buildings [J]. Journal of Structural Engineering, ASCE, 1980, 106(5): 973-990.
  • 10Kumar K S, Stathopoulos T. Wind loads on low building roofs: A stochastic perspective [J]. Journal of Structural Engineering, ASCE, 2000, 126(8): 944- 956.

共引文献31

同被引文献78

引证文献11

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部