期刊文献+

基于HMM的动作识别结果可信度计算方法 被引量:8

Identifying the confidence level of activity recognition via HMM
下载PDF
导出
摘要 针对当前动作识别可信度计算方法中混淆率高、不适用于迁移学习等问题,提出一种基于样本上下文信息的可信度计算方法(S-HMM,sliding windows hidden Markov model)。该方法使用隐马尔可夫模型(HMM,hidden Markov model)理论对识别结果序列建模,将样本所在序列识别正确的概率作为识别结果的可信度,避免了当前可信度计算方法依赖于样本在特征空间中分布的问题。实验使用真实场景中的数据进行仿真,结果表明,与现有方法相比,该方法可将可信度混淆率降低37%左右。 A context-based method to identify the confidence level of activity recognition was proposed, referred to as S-HMM(sliding window hidden Markov model), which reduced the confusion rate and facilitated the transfer learning. With S-HMM, the activity recognition sequence was modeled as HMM(hidden Markov model)and the corresponding probability was adopted as the confidence level. This way, S-HMM removed the dependency of the confidence level on the sample distribution in the feature space. S-HMM is extensively evaluated based on real-life activity data, demonstrating a reduced confusion rate of 37% when compared to the state-of-the-art methods.
出处 《通信学报》 EI CSCD 北大核心 2016年第5期143-151,共9页 Journal on Communications
基金 高等学校博士学科点专项科研基金资助项目(No.20120031110035) 天津市重大科技专项基金资助项目(No.13ZCZDGX01098)~~
关键词 动作识别 隐马尔可夫模型 混淆率 可信度 activity recognition hidden Markov model confusion rate confidence level
  • 相关文献

参考文献21

  • 1HOSEINI S A, GLUHAKA, TAFAZOLLI R. A survey on smart-phone-based systems for opportunistic user context recognition[J]. ACM Computing Surveys (CSUR), 2013, 45(3): 1-27.
  • 2BULLING A, BLANKE U, SCHIELE B. A tutorial on human activity recognition using body-worn inertial sensors[J]. ACM Computing Surveys (CSUR), 2014, 46(3): 57-76.
  • 3CHIANG J H, YANG P C, TU H. Pattern analysis in daily physical activity data for personal health management[J]. Pervasive and Mobile Computing, 2014, 13(4): 13-25.
  • 4ZHOU B, LI Q, MAO Q, et al. Activity sequence-based indoor pedes- trian localization using smartphones[J]. IEEE Transactions on Hu- man-Machine Systems, 2015,45(5):562-574.
  • 5MARTIN H, BERNARDOS A M, IGLESIAS J, et al. Activity log- ging using lightweight classification techniques in mobile devices[J]. Personal and Ubiquitous Computing, 2013, 17(4): 675-695.
  • 6SUAREZ I, JAHN A, ANDERSON C, et al. Improved activity recog- nition by using enriched acceleration data[C]//The 2015 ACM Interna- tional Joint Conference on Pervasive and Ubiquitous Computing. ACM, e2015: 1011-1015.
  • 7REISS A, HENDEBY G, STRICKER D. A novel confidence-based multiclass boosting algorithm for mobile physical activity monitor- ing[J]. Personal and Ubiquitous Computing, 2015, 19(1): 105-121.
  • 8YOUNES R, MARTIN T L, JONES M. Activity classification at a higher level: what to do atter the classifier does its best[C]/fI'he 2015 ACM Inter- national Symposium on Wearable Computers.ACM, c2015: 83,86.
  • 9CHEN Y Q, ZHAO Z T, WANG S Q, et al. Extreme learning ma- chine-based device displacement free activity recognition model[J]. Sot Computing, 2012, 16(9): 1617-1625.
  • 10DENG W Y, ZHENG Q H, WANG Z M. Cross-person activity recog- nition using reduced kernel extreme learning machine [J]. Neural Networks, 2014, 53(1): 1-7.

二级参考文献35

  • 1周东清,张海锋,张绍武,胡祥培.基于HMM的分布式拒绝服务攻击检测方法[J].计算机研究与发展,2005,42(9):1594-1599. 被引量:15
  • 2邬书跃,田新广.基于隐马尔可夫模型的用户行为异常检测新方法[J].通信学报,2007,28(4):38-43. 被引量:20
  • 3CHRISTEY S, MARTIN R A. Vulnerability type distributions in CVE[EB/OL]. http://cwe.mitre.org/documents/vuln-trends.html. 2009.
  • 4FIELDING R, GETTYS J, MOGUL J, et al. Hypertext Transfer Protocol-HTFP/1.1[S]. RFC-2616, 1999.
  • 5BACE R. Intrusion Detection [M]. Macmillan Publishing Co. Inc., 2000.
  • 6ROESCH M, Snort-lightweight intrusion detection for networks[A].Proc of the 13th USENIX Conference on System Administration (LISA)[C]. Seattle, USENIX Association,1999. 229-238.
  • 7LI M, ZHAO W. Detection of variations of local irregularity of traffic under DDOS flood attack[EB/OL], http://www.hindaui.com/journals/ mpe/2008/475878.html.2008.
  • 8LI M. Change trend of averaged. Hurst parameter of traffic under DDOS flood attacks[J]. Computers & Security, 2006, 25 (3): 213-220.
  • 9WARRENDER C, FORREST S, PEARLMUTTER B. Detecting intrusions using system calls: alternative data models[A]. Proceedings of the IEEE Symposium on Security and Privacy[C]. Oakland, 1999. 133-145.
  • 10YEUNG D Y, DINGY. Host-based intrusion detection using dynamic and static behavioral models [J]. Pattern Recognition, 2003, 36: 229-243.

共引文献34

同被引文献53

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部