摘要
针对当前动作识别可信度计算方法中混淆率高、不适用于迁移学习等问题,提出一种基于样本上下文信息的可信度计算方法(S-HMM,sliding windows hidden Markov model)。该方法使用隐马尔可夫模型(HMM,hidden Markov model)理论对识别结果序列建模,将样本所在序列识别正确的概率作为识别结果的可信度,避免了当前可信度计算方法依赖于样本在特征空间中分布的问题。实验使用真实场景中的数据进行仿真,结果表明,与现有方法相比,该方法可将可信度混淆率降低37%左右。
A context-based method to identify the confidence level of activity recognition was proposed, referred to as S-HMM(sliding window hidden Markov model), which reduced the confusion rate and facilitated the transfer learning. With S-HMM, the activity recognition sequence was modeled as HMM(hidden Markov model)and the corresponding probability was adopted as the confidence level. This way, S-HMM removed the dependency of the confidence level on the sample distribution in the feature space. S-HMM is extensively evaluated based on real-life activity data, demonstrating a reduced confusion rate of 37% when compared to the state-of-the-art methods.
出处
《通信学报》
EI
CSCD
北大核心
2016年第5期143-151,共9页
Journal on Communications
基金
高等学校博士学科点专项科研基金资助项目(No.20120031110035)
天津市重大科技专项基金资助项目(No.13ZCZDGX01098)~~
关键词
动作识别
隐马尔可夫模型
混淆率
可信度
activity recognition
hidden Markov model
confusion rate
confidence level