期刊文献+

一种基于特征提取的教育视频资源推送方法 被引量:8

The Implementation of Educational Video Resources Recommendation Method Based on Feature Extraction
下载PDF
导出
摘要 丰富的网络教育视频资源满足了学习者自主选择学习内容、时间和地点的需求。然而资源自身及其平台存在着内容质量参差不齐、优质教育资源匮乏、资源同质化、资源推送方式单一等问题,学习者难以快速高效地从海量的资源中获取与自身需求相关的有价值的资源。为让学习者高效获取个性化教育视频资源,在进行资源推送时,研究采用深度学习方法准确识别出视频资源中的知识点,通过构造视频中的知识点、视频质量和学习者需求之间的特征向量作为支持向量机的输入,由支持向量机决定是否将视频资源推送给学习者。将学习者对推送结果的实际点击率和学习者反馈的满意度作为方法的性能评价指标。这种推送方法关注学习者的兴趣需求和视频特征的结合,能更好地满足学习者的要求并提升学习效率,具有较大的应用潜力。 The plentiful network educational video resources meet the demand of learners to select learning content, learning time and learning place by themselves. However, it's difficult for learners to obtain worthwhile resources associated with their needs from the massive resources quickly and efficiently because of some problems existing in the resources or the resources platform such as the varied quality of resource content, the scarcity of high-quality educational resources, resources homogenization, the single mode of resources pushing. To allow learners to get personalized educational video resources efficiently, when recommending resources, this research uses deep learning method to identify the knowledge points of video resources accurately. Then the feature vector structured by the knowledge points of video resources, video quality and the needs of learners serves as the input of the support vector machine, which is responsible for deciding whether to recommend video resources to the learners or not. The performance evaluating indicators of this proposed method includes the actual click rate of the recommended resources by learners and the satisfaction degree fed back by learners. This proposed method focuses on the combination of the learners' interests and video features, which can better meet the requirements of learners and enhance the ability of learners with great potential in application.
出处 《现代远程教育研究》 CSSCI 2016年第3期104-112,共9页 Modern Distance Education Research
基金 湖南省教育科学"十二五"规划重点资助项目"云计算环境下基础教育优质数字资源建设与应用研究"(XJK014AJC001) 国家自然科学基金项目"云计算中资源共享的分层博弈联盟形成与定价机制研究"(61379111)
关键词 教育视频资源 特征提取 深度学习 支持向量机 推送方法 Educational Video Resources Feature Extraction Deep Learning Support Vector Machine Recommendation Method
  • 相关文献

参考文献14

  • 1林海平,檀晓红,申瑞民.基于知识结构图的个性化学习内容生成算法[J].上海交通大学学报,2010,44(3):418-422. 被引量:7
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 4张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 5Avancini, H., & Straccia, U. (2004). Personalization, Collaboration, and Recommendation in the Digital Library Envi- ronment Cyclades[A]. Proceedings of the IADIS International Conference Applied Computing(AC-04)[C]. Lisbon, Portugal: IADIS:589-596.
  • 6Dunja, M.(1996). Personal Web Watcher. Design and Im- plementation[R]. Department of Intelligent Systems J Stefan Institute.
  • 7Hinton, G. E., & Salakhutdinov, R. R.(2006). Reducing the Dimensionality of Data with Neural Networks[J]. Science, 313(5786):504-507.
  • 8Lieberman, H., Dyke, N. V., & Vivacqua, A.(1999). Let's Browse: A Collahorative Browsing Agent[J]. Knowl- edge-Based Systems, 12(8):427-431.
  • 9Linden, G., Smith, B., & York, J.(2010). Amazon.com Recommendations: Item-to-Item Collaborative Fihering[J]. IEEE Internet Computing, 7(1):76-80.
  • 10James. R., & Marcos, J. P.(1997). Siteseer: Personalized Navigation for the Web[J]. Communications of the ACM, 40(3):73-75.

二级参考文献94

  • 1杨帆,申瑞民,童任,韩鹏.一种新颖的协作式自组织学习社区算法[J].上海交通大学学报,2004,38(12):2078-2081. 被引量:4
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献2952

同被引文献83

引证文献8

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部