期刊文献+

3种伪谱最优控制方法的积分形式及统一性证明 被引量:4

Integral form and equivalence proof of three pseudospectral optimal control methods
原文传递
导出
摘要 为了进一步提高伪谱最优控制方法的计算精度,削弱微分形式伪谱法对状态变量近似误差的放大幅度,研究基于积分形式的伪谱最优控制方法.依次给出3种伪谱法的积分伪谱离散形式,证明当Lagrange多项式对状态变量的近似误差等于零时,Gauss伪谱法和Radau伪谱法的积分形式与微分形式是等价的,而Legendre伪谱法的积分形式与微分形式是不等价的,并分析了其不等价的原因. In order to further improve the accuracy of the pseudospectral optimal control method, and weaken the amplification of approximation errors of state variables in the differential pseudospectral method, the integral pseudospectral optimal control method is studied. The integral pseudospectral discrete forms of three pseudospectral methods are presented,which are Legendre pseudospectral method, Gauss pseudospectral method and Radau pseudospectral method, respectively.When the approximation errors of Lagrange polynomials for state variables are equal to zero, it is proved that the differential and integral forms of Gauss pseudospectral method and Radau pseudospectral method are equivalent, but that of Legendre pseudospectral method is not equivalent, and the reason of nonequivalence is also analyzed.
出处 《控制与决策》 EI CSCD 北大核心 2016年第6期1123-1127,共5页 Control and Decision
关键词 伪谱最优控制 积分伪谱法 微分伪谱法 pseudospectral optimal control integral pseudospectral method differential pseudospectral method
  • 相关文献

参考文献10

  • 1Elnagar G N, Kazemi M A, Razzaghi M. Thepseudospectral Legendre method for discretizing optimalcontrol problems [J]. IEEE Trans on Automatic Control,1995, 40(10): 1793-1796.
  • 2Benson D. A Gauss pseudospectral transcription foroptimal control[D]. Boston: Department of Aeronauticsand Astronautics, Massachusetts Institute of Technology,2004.
  • 3SUN Yong,HOU MingZhe,DUAN GuangRen,LIANG XiaoLing.On-line optimal autonomous reentry guidance based on improved Gauss pseudospectral method[J].Science China(Information Sciences),2014,57(5):240-255. 被引量:6
  • 4Garg Divya, Patterson Michael A, Darby Christopher L,et al. Direct trajectory optimization and costate estimationof general optimal control problems using a Radaupseudospectral method[C]. Proc of the AIAA Guidance,Navigation, and Control Conf and Exhibit. Chicago: 2009:5989-6017.
  • 5Garg Divya, Patterson Michael A, Darby ChristopherL, et al. Direct trajectory optimization and costateestimation of finite-horizon and infinite-horizon optimalcontrol problems using a Radau pseudospectral method[J].Computational Optimization and Applications, 2011,49(2): 335-358.
  • 6Rao Anil V, Patterson Michael A, Hager WilliamW. Variable-order mesh refinement for solving optimalcontrol problems using an integral Legendre-Gauss-Radaucollocation method[J]. 2014.
  • 7Garg Divya. Advances in global pseudospectralmethods for optimal control[D]. Gainesville: MechanicalEngineering, University of Florida, 2011.
  • 8Garg Divya, Patterson Michael, Hager William W,et al. A unified framework for the numerical solution ofoptimal control problems using pseudospectral methods [J].Automatica, 2010, 46(11): 1843-1851.
  • 9Mirsky Leonid. An introduction to linear algebra[M]. MewYork: Dover Publications, 2012.
  • 10Rao Anil V, Mease Kenneth D. Eigenvector approximatedichotomic basis method for solving hypersensitiveoptimal control problems [J]. Optimal Control Applicationsand Methods, 2000,21(1): 1-19.

二级参考文献3

共引文献5

同被引文献27

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部