期刊文献+

带不确定噪声方差保性能鲁棒集中式融合Kalman预报器 被引量:1

Guaranteed cost robust centralized fusion Kalman predictor with uncertain noise variances
原文传递
导出
摘要 对于带不确定噪声方差的多传感器系统,基于极大极小鲁棒估计原理,提出保证估计性能的集中式融合鲁棒稳态Kalman预报器.对于预置的估计精度偏差指标,利用Lagrange乘数法求得相应噪声方差的最大扰动域,使该域中所有可容许的噪声扰动,其实际精度对鲁棒精度的偏差被保证在预置范围内,并给出精度偏差的最大下界和最小上界.应用Lyapunov方程方法证明了保证估计性能能够被满足.仿真分析表明了所得结果的正确性和有效性. A guaranteed cost robust centralized fusion steady-state Kalman predictor is presented for the multisensor system with uncertain noise variances based on the minimax robust estimation principle. A maximal perturbation region of uncertain noise covariances is obtained by using the Lagrange multiplier method. For all admissible perturbations in this region, the deviations of its actual accuracies with respect to the robust accuracy are guaranteed to remain within the prescribed range,and the maximal lower bound and minimal upper bound of accuracy deviations are given. The proof of the guaranteed cost is presented by using the Lyapunov equation approach. A simulation example is given to illustrate the correctness and effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2016年第6期1133-1137,共5页 Control and Decision
基金 国家自然科学基金项目(60874063 60374026)
关键词 多传感器数据融合 鲁棒Kalman预报器 保证性能 不确定噪声方差 极大极小鲁棒估计 multisensor data fusion robust Kalman predictor guaranteed cost uncertain noise variances minimax robust estimation
  • 相关文献

参考文献10

  • 1Lewis F L, Xie L H, Popa D. Optimal and robustestimation, second edition[M]. New York: CRC Press,2008: 315-335.
  • 2Zhu X,Soh Y C,Xie L H. Design and analysis of discrete-time robust Kalman filters [J]. Automatica, 2002, 38(6):1069-1077.
  • 3Ebinara Y,Hagiwara T. A dilated LMI approach to robustperformance analysis of linear time — Invariant uncertainsystems [J]. Automatica, 2005, 41(11): 1933-1941.
  • 4Hall D L, Llinas J. An introduction to multisensor datafusion[J]. Proc ffiEE, 1997,85(1): 6-23.
  • 5Qi W J, Zhang P, Deng Z L. Robust weighted fusionKalman filters for multisensor time-varing systems withuncertain noise variances [J]. Signal Processing, 2014,99(6): 185-200.
  • 6Qi W J, Zhang P, Nie G H, et al. Robust weightedfusion Kalman predictors with uncertain noise variances [J].Digital Signal Processing, 2014, 30(1): 37-54.
  • 7Qi W J, Zhang P, Deng Z L. Robust weighted fusion time-varying Kalman smoothers for multisensor systems withuncertain noise variances [J], Information Sciences, 2014,282(11): 15-37.
  • 8Xi H S. The guaranteed estimation performance filter fordiscrete-time descriptor systems with uncertain noise[J].Int J of Systems Science, 1997,28(1): 113-121.
  • 9Ian R Petersen. Robust guaranteed cost state estimation fornonlinear stochastic uncertain systems via anIQCapproach[J]. System & Control Letters, 2009, 58(12):865-870.
  • 10Kailath T,Sayed A H,Hassibi B. Linear estimation[M].New York: Prentice Hall, 2000: 766-768.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部