期刊文献+

基于分层模型和鲁棒字典学习的背景差分炸点检测 被引量:2

Detection of Blast Point Based on Hierarchical Model of Background Subtraction via Robust Dictionary Learning
下载PDF
导出
摘要 针对背景差分炸点检测方法中背景模型难以更新背景估计和运算复杂等问题,提出一种分层模型下基于鲁棒字典学习的背景差分炸点检测方法。为提高运算效率,该方法对图像帧建立3层金字塔分层模型,在每层将图像帧分割为互不重叠块,逐层以图像块为单位通过改进的鲁棒字典学习方法进行背景估计,与当前图像帧作背景差分实现炸点检测。采用炮弹炸点图像序列对所提出的方法进行了实验验证。实验结果表明,与现有炮弹炸点检测方法相比,该方法在准确率、误检率和鲁棒性方面均具有优越性能。 For the background estimation and huge computation problems of background model in the background subtraction blast point detection method,a blast point detection method is proposed based on a hierarchical model of background subtraction via robust dictionary learning. To improve the operation efficiency,a three-tier pyramid hierarchical model is established to divide each frame image into non-overlapping blocks. The blast points are detected from the subtraction between current frame image and image background estimation by using the improved robust dictionary learning method layer by layer. Experimental results on a large number of blast point image sequences show that the proposed method has superior performance in correct detection rate,false positive rate and robustness in comparison with the existing blast point detection method.
出处 《兵工学报》 EI CAS CSCD 北大核心 2016年第4期705-711,共7页 Acta Armamentarii
基金 安徽省自然科学基金项目(1508085QF114)
关键词 兵器科学与技术 炸点检测 背景差分 分层模型 鲁棒字典学习 ordnance science and technology blast point detection background subtraction hierarchi cal model robust dictionary learning
  • 相关文献

参考文献18

  • 1Yilmaz A,Javed 0,Shah M. Object tracking: a survey [ J]. AcmComputing Surveys, 2006,38(1 ) :81 -93.
  • 2秦晓燕,王晓芳,陈萍,储德军,王海涛.基于Adaboost算法的炮弹炸点检测[J].兵工学报,2012,33(6):682-687. 被引量:8
  • 3Benzeth Y, Jodoin P M, Emile B, et al. Comparative study ofbackground subtraction algorithm[ J]. Journal Electronic Imaging,2010’ 19(3) :1 -12.
  • 4高仕博,程咏梅,肖利平,韦海萍.面向目标检测的稀疏表示方法研究进展[J].电子学报,2015,43(2):320-332. 被引量:18
  • 5Piccardi M. Background subtraction techniques: a review[ C] //International Conference on Systems, Man and Cybernetics. HongKong, China:IEEE, 2004:3099 -3104.
  • 6Zhou X,Yang C, Yu W. Moving object detection by detectingcontiguous outliers in the low-rank representation [ J ] ? IEEETransactions on Pattern Analysis and Machine Intelligence, 2013 ,35(3) : 597 -610.
  • 7Lei H,Mei K,Zheng N,et al. Learning group-based dictionariesfor discriminative image representation [ J ]. Pattern Recognition,2014,47(2) : 899 -913.
  • 8Huang J Z, Huang X L, Metaxas D. Learning with dynamic groupsparsity[C] //International Conference on Computer Vision. Kyo-to, Japan: IEEE,2009:64 -71.
  • 9Zhao C, Wang X,Cham W K. Background subtraction via robustdictionary learning [ J ]. Eurasip Journal on Image & Video Pro-cessing, 2011,2011(10) :2919 -2929.
  • 10孔康,陶卿,汪群山,储德军.基于次梯度的L1正则化Hinge损失问题求解研究[J].计算机研究与发展,2012,49(7):1494-1499. 被引量:4

二级参考文献38

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2Yuan Guoxun, Chang Kaiwei, Hsieh C J, et al. A Comparison of Optimization Methods for Large-scale L1-regularized Linear Classification[EB/OL]. (2009-11-04). http://www.csie.ntu.edu.tw/ ~cjlin/papers.html.
  • 3Zhang Tong. Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms[C]//Proc. of the 21st International Conference on Machine Learning. [S. l.]: ACM Press, 2004: 919-936.
  • 4Duchi J, Shalev-Shwartz S, Singer Y. Efficient Projections onto the L1-ball for Learning in High Dimensions[C]//Proc. of the 25th International Conference on Machine Learning. [S. l.]: ACM Press, 2008: 272-279.
  • 5Langford J, Li Lihong, Zhang Tong. Sparse Online Learning via Truncated Gradient[EB/OL]. (2009-01-12). http://portal.acm.org/ citation.cfm?id=1577097.
  • 6Duchi J, Singer Y. Efficient Online and Batch Learning Using Forward Backward Splitting[EB/OL]. (2009-12-10). http://jmlr. csail.mit.edu/papers/v10/duchi09a.html.
  • 7Shalev-Shwartz S, Tewari A. Stochastic Methods for L1 Regula- rized Loss Minimization[C]//Proc. of the 26th International Confe- rence on Machine Learning. [S. l.]: ACM Press, 2009: 929-936.
  • 8Xiao Lin. Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization[EB/OL]. (2010-10-11). http:// jmlr.csail.mit.edu/papers/v11/xiao10a.html.
  • 9Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video [ C]//Proc IEEE Workshop Appli- cations of Computer Vision. Princeton, NJ : IEEE, 1998 : 8 - 14.
  • 10Ohta N. Uncertainty models of the gradient constraint for optical flow computation[ J]. IEICE Transactions on Information and Sys- tems(D), 1996, E79 -D(7) : 958 -964.

共引文献39

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部