摘要
在室内组合定位系统中,不同子系统之间相互姿态关系的确定是通过对准过程实现的。使用惯性器件进行组合定位,通常航姿参考系统AHRS是以地理坐标系(E-N-U)作为导航坐标系。然而,在室内导航任务中,导航坐标系一般根据用户需求建立在厂内标志点或工装坐标系等自定义位置。针对这一问题,提出一种将地理坐标系与自定义坐标系相互转换的新方法,通过激光跟踪仪建立的外部基准,提出了基于方向余弦矩阵的标定算法,实现了地理坐标系与外部参考坐标系之间的相互转换。实验结果表明:AHRS任意位姿下的转换姿态角度均方根误差小于0.25°。
In an integrated location system, the establishment of mutual attitude relationships between different subsystems is accomplished by the alignment processing. When the inertial component is used for positioning, the attitude and heading reference system(AHRS) is generally based on geographic coordinate system(E-N-U) as the navigation coordinate system. However, during indoor navigation task,the navigation coordinate system is generally based on the users ′ requirement such as marked points or workpiece coordinate system. In this paper a new alignment method based on direction cosine matrix was proposed for the integrated positioning system of indoor mobile object. The transformation between geographic coordinate system and external reference coordinate system can be achieved by the method.Then coordinate system of laser tracker became navigation reference and real-time and precise transformation between different coordinate systems can be realized by this new alignment method.Experimental results show that the measured RMS errors for attitude angles after transformation are less than 0.25° while the AHRS is in arbitrary position and orientation.
出处
《红外与激光工程》
EI
CSCD
北大核心
2016年第5期230-235,共6页
Infrared and Laser Engineering
基金
国家自然科学基金(51405338)
关键词
组合定位
方向余弦矩阵
捷联惯导
激光跟踪仪
integrated location
direction cosine matrix
strapdown inertial navigation system
laser tracker