期刊文献+

固体氧化物燃料电池阳极材料La_xSr_(2–x)MgMoO_(6–δ)的结构与电化学性能 被引量:2

Structure and Electrochemical Performance of La-doped Sr_2MgMoO_(6–δ) as an Anode Material for Solid Oxide Fuel Cell
原文传递
导出
摘要 通过柠檬酸络合法合成了La_xSr_(2–x)MgMoO_(6–δ)(LSMM)阳极材料。利用X射线衍射和扫描电子显微镜分析样品的物相结构、微观形貌及与电解质的化学相容性,采用四端引线法测试材料的电导率,利用电化学工作站测试其阳极阻抗特性,并以La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_3(LSGM)为电解质、PrBaCo_2O_(5+δ)为阴极制备了单电池,测试功率密度。结果表明:空气中La的掺杂量小于0.2(摩尔分数)时,还原后La的掺杂量可以达到0.6,La的掺杂导致晶胞体积增大。La掺杂的Sr_2MgMoO_6(SMMO)与电解质LSGM、Ce_(0.8)Gd_(0.2)O_(2–δ)(GDC)在1 250℃煅烧10 h,均没有杂质相生成,具有良好的化学相容性。La掺杂显著提高了SMMO的电导率,800℃、5%H2/Ar气氛中,La_(0.6)Sr_(1.4)MgMoO_(6–δ)的电导率为40 S/cm。La的掺杂降低了阳极材料的极化电阻,提高了电池功率密度。 LaxSr2-xMgMoO6-δ (LSMM) anode material was synthesized via a citrate acid complexing method. The phase composition was determined by X-ray diffraction, and the microstructure of the sintered samples was determined by scanning electron microscopy. The electrical conductivity of all samples was measured by a standard four-terminal de method, and the AC electrochemical impedance spectra were detected in a symmetrical cell. Single fuel cells were prepared using an electrolyte-supported technique with La0.8Sr0.EGa0.8Mg0.2O3(LSGM) as an electrolyte, LSMM as an anode and PrBaCo2O5+δ as a cathode. The results demonstrate that the doping limit of La is less than 0.2 in air, which is 0.6 after reducing in 5%Ha/Ar. The doping leads to the increase of cell volume of LSMM. The LSMM anode material has a good chemical compatibility with GDC and LSGM electrolytes after calcining at 1 250℃ for 10 h. The La doping increases the electronic conductivity of La0.6Sr1.4MgMoO6-δ, which is 40 S/cm at 800 ℃ in 5%H2/Ar, and decreases the polarization resistance, resulting in the improvement of power density for single cells.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2016年第6期817-823,共7页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(51402136 51402135) 江西省自然科学基金(20142BAB216007 20142BAB216006) 江西省教育厅基金(GJJ150935)资助
关键词 固体氧化物燃料电池 阳极 电导率 阻抗 功率密度 solid oxide fuel cell anode conductivity impedance power density
  • 相关文献

参考文献16

  • 1JIANG S P, YE Y, HE T, et al. Nanostructured palladium Lao.75Sr0.z5Cro.sMn0.503/YzO3-Zr02 composite anodes for direct methane and ethanol solid oxide fuel cells [J]. J Power Sources, 2008, 185(1): 179-182.
  • 2KIM P, BRETT D J L, BRANDON N E The effect of water content on the electrochemical impedance response and microstructure of NiGO anodes for solid oxide fuel cells[J]. J Power Sources, 2009, 189(2): 1060-1065.
  • 3AI N, Lii Z, TANG J, et al. hnprovement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer[J]. J Power Sources, 2008, 185(I): 153-158.
  • 4CLEMMER R M C, CORBIN S F. The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications[J]. Solid State Ionics, 2009, 180(9/10): 721-730.
  • 5LOHSOONTORN P, BRETT D J L, BRANDON N P. The effect of fuel composition and temperature on the interaction of H2S with nickel-ceria anodes for Solid Oxide Fuel Cells[J]. J Power Sources, 2008, 183(1): 232-239.
  • 6DING D, LI L, FENG K, et al. High performance Ni Sm203 cermet anodes for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2009, 187(2): 400-402.
  • 7HERNADI K, FONSECA A, NAGY J B, et al. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds[J]. Appl Catal A, 2000, 199(2): 245-255.
  • 8KOH J H, YOO Y S, PARK J W, et al. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel[J]. Solid State Ionics, 2002, 149(3/4): 157-166.
  • 9HUANG Y H, DASS R I, XING Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006, 312(5771): 254-257.
  • 10HUANG Y H, DASS R I, DENYSZYN J C, et al. Synthesis and characterization of SrEMgMoO6m an anode material for the solid oxide fuel cell[J]. J Electrochem Soc, 2006, 153(7): A1266-A1272.

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部