期刊文献+

面向大坝信息建模:建筑、工程、施工及设施管理领域的最佳实践 被引量:2

Towards dam information modeling: best practices learned from the AEC/FM domain
下载PDF
导出
摘要 当工程师评估大坝的风险时,他们需要各种各样的信息,如仪器数据、事故的历史记录、之前的风险评估报告、施工记录、大坝几何形状、地理位置信息等。然而,这些信息大多记录在不同文件中,或者由机构、个人掌握。这种大坝相关历史数据的存储方式过于分散,无助于综合评估以及在存储数据中挖掘知识以及分析数据的有效可视化。如果没有综合的信息库,工程师很难有效地做出风险确定的决策。为改进风险确定决策制定过程,先进的信息建模、分析和可视化技术已成功应用在建筑和基础设施领域。笔者概述并评价了这些最佳实践应用在大坝风险评估中的适用性、优势和局限性。具体而言,笔者回顾了信息模型、数据标准、可视化系统和数据分析等领域的最佳实践,并探讨如何利用它们改进大坝风险评估。笔者提出的最佳实践可以使工程师在一个综合环境中审查和交换所有必要信息,有可能改进现有大坝风险管理过程。 When engineers assess the risk of dams, they require a wide variety of information such as in-strumentation data, historical records of incidents, previous risk assessment reports, construction re-cords, dam geometry, geolocation information, etc. However, the majority of this information is typicallyfound in disparate documents, as well as in institutional and/or personal knowledge. This dispersed wayof storing dam related historical data does not help in integrated assessment, knowledge discovery instored data or effective visualization of analyzed data. Without an integrated information repository, it canbedifficult for engineers to make risk-informed decisions efficiently. To improve the risk informed deci-sion making process, advanced information modeling, analysis and visualization techniques have beensuccessfully applied in building and facilities domains. In this paper, such best practices are overviewedand assessed for their applicability, benefits, and limitations for dam risk assessment. Specifically, we re-view best practices on information models, data standards, visualization systems, and data analytics fromother domains and discuss how they may be leveraged for improving the risk assessment of dams. Thebest practices presented in this paper could have the potential to improve the existing dam risk manage-ment process by allowing engineers to review and exchange all necessary information in an integrated en-vironment.
出处 《大坝与安全》 2016年第1期65-70,共6页 Dam & Safety
关键词 大坝 信息模型 数据标准 可视化系统 数据分析 dam information models data standards visualization systems data analytics
  • 相关文献

同被引文献34

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部