期刊文献+

水波优化算法收敛性分析 被引量:8

Convergence Analysis of Water Wave Optimization Algorithm
下载PDF
导出
摘要 水波优化(Water Wave Optimization,WWO)算法是一种受浅水波现象启发的新兴进化算法,它通过模拟水波的传播、折射、碎浪等运动机制来在高维解空间中进行高效搜索。该算法已被证明在大量基准测试问题和工程实际问题上优于其它许多前沿的启发式优化算法。从理论上分析了WWO算法的收敛性条件。通过对目标问题和算法参数设置的简化,证明了WWO中任何个体在两种特殊情况下都是收敛的:(1)只执行传播操作;(2)只执行折射操作。这两种情况分别对应两种特殊的适应度变化状态。进行了数值仿真实验,验证了上述两种收敛性条件。 Taking inspiration from the phenomena of water waves tor global optxmlzatxon, water wave opumzntlu (WWO) is a novel evolutionary algorithm which mimics wave motions including propagation, refraction and breaking for effectively searching in a high-dimensional solution space, which has shown promising performance advantage over a variety of state-of-the-art metaheuristic optimization methods on well-known benchmark problems and real-world engi- neering problems. The paper theoretically analyzed the convergence conditions of the WWO algorithm. By simplifying the target problem and the parameter setting of the algorithm, we demonstrated that in WWO any individual can guaran- tee the convergence in two special cases: 1) when only performing the propagation operation and 2) when only perfor- ming the refraction operation, which respectively happen under two special states of fitness changing. The paper also conducted numerical simulations for the two special cases respectively to validate the above convergence conditions.
作者 张蓓 郑宇军
出处 《计算机科学》 CSCD 北大核心 2016年第4期41-44,共4页 Computer Science
基金 国家自然科学基金项目(61473263)资助
关键词 进化算法 水波优化算法 收敛性 传播 折射 Evolutionary algorithm, Water wave optimization algorithm , Convergence, Propagation, Refraction
  • 相关文献

参考文献22

  • 1De Jong K A.Evolutionary computation:a unified approach[M].Cambridge:MIT press,2006.
  • 2Holland J H.Adaptation in Natural and Artificial Systems:AnIntroductory Analysis with Applications to Biology,Control and Artificial Intelligence [M].Cambridge:MIT Press,1992.
  • 3Kennedy J,Eberhart R.Particle swarm optimization [C]∥IEEE International Conference on Neural Networks.1995:1942-1948.
  • 4Dorigo M,Caro G D.Ant colony optimization:a new meta-heuristic [C]∥Proceedings of the 1999 Congress on Evolutionary Computation.1999:1470-1477.
  • 5Geem Z W,Kim J H,Loganathan G V.A new heuristic optimization algorithm:harmony search [J].Simulation,2001,76(2):60-68.
  • 6Mehrabian A R,Lucas C.A novel numerical optimization algorithm inspired from weed colonization [J].Ecological Informa-tics,2006,1(4):355-366.
  • 7Simon D.Biogeography-based optimization [J].IEEE Transactions on Evolutionary Computation,2008,12(6):702-713.
  • 8Rashedi E,Nezamabadi-Pour H,Saryazdi S.GSA:A gravitationalsearch algorithm [J].Information Sciences,2009,179(13):2232-2248.
  • 9赵玉新,Xin-SheYang,刘立强.新兴元启发式优化算法[M].北京:科学出版社,2013..
  • 10Srensen K.Metaheuristics-the metaphor exposed[J].International Transactions in Operational Research,2015,22(1):3-18.

二级参考文献32

  • 1田富鹏.改进型蚁群算法及其在TSP中的应用[J].兰州大学学报(自然科学版),2005,41(2):78-80. 被引量:6
  • 2程志刚,陈德钊,吴晓华.连续蚁群优化算法的研究[J].浙江大学学报(工学版),2005,39(8):1147-1151. 被引量:9
  • 3冯远静,冯祖仁,彭勤科.一类自适应蚁群算法及其收敛性分析[J].控制理论与应用,2005,22(5):713-717. 被引量:18
  • 4黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 5Jonathan F Bard. Practical Bilevel Optimization Algorithms and Application[M]. The Netherlands: Kluwer Academic Publishers, 1998. 193-386.
  • 6Zeynep H. Gümüs, Christodoulos A Floudas. Global optimization of nonlinear bilevel programming problems[J]. Journal of Global Optimization, 2001, 20: 1-31.
  • 7Mahyar A Amouzegar. A global optimization method for nonlinear bilevel programming problems[J]. IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics, 1999, 29(6): 771-777.
  • 8Olav K. Foundations of Modern Probability[M]. New York : Springer-Verlag , 1997.
  • 9Patrick B. Convergence of Probability Measures[M]. New York:Wiley, 1999.
  • 10Thomas A Edmunds, Jonathan F Bard. Algorithms for nonlinear bilevel mathematical programs[J]. IEEE Trans. on Systems, Man, and Cybernetics, 1991, 21(1): 83-89.

共引文献26

同被引文献39

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部