摘要
讨论了带有通配符和长度约束的模式匹配(PMWL)问题,其中模式由子模式序列集组成,两个相邻子模式的间隔在一定长度范围内。针对PMWL问题,已有工作包括设计启发式求解算法和对特殊情况进行完备性分析,然而还需要构建问题的基础求解模型。借鉴约束可满足问题框架,构建了由变量、值域和约束组成的三元组求解模型,对PMWL问题的基本概念和基本性质给出了形式化描述。最后,给出了算法求解PMWL问题的特定条件下的完备解。
For the problem of pattern matching with wildcards and length constraints (PMWL), the patterns are com- posed of a sequence of sub-patterns,where any two adjacent sub-patterns with flexible gaps are in a specified range of the text. Existing work includes a heuristic strategy and its completeness analysis with constraints, but the PMWL problem still needs systematic studies. We drew on the experience of constraint satisfaction problems(CSPs) and set up a 3-tuple model consisting of variables, domains and constraints. We then derived formal descriptions for the basic con- cepts and properties. Also, a tree-based matching algorithm was presented to solve the PMWL problem under certain conditions.
出处
《计算机科学》
CSCD
北大核心
2016年第4期279-283,F0003,共6页
Computer Science
基金
国家自然科学基金项目(31100956
61173117)资助
关键词
长度约束
通配符
求解模型
模式匹配
Length constraints, Wildcards, Matcing model, Pattern matching