期刊文献+

基于区域混合活动轮廓模型的医学图像分割 被引量:7

Medical Image Segmentation Based on Region-based Hybrid Active Contour Model
下载PDF
导出
摘要 针对变分水平集算法在图像分割过程中计算量较大且收敛速度慢的现象,在一些基于区域的活动轮廓模型基础上提出了一种新的基于区域混合模型的非凸正则化活动轮廓模型。该模型构造了一个新的能量泛函,该能量泛函结合了考虑图像局部聚类性质的LBF模型和测地线模型,增加了非凸正则化项,加快了轮廓曲线的收敛速度,可以很好地保持区域形状并能防止边缘过平滑,然后通过经典有限差分法求得能量泛函的极小值。最后,在合成图像和医学图像上做了仿真实验,结果表明,该算法具有较快的收敛速度和很好的鲁棒性,分割结果也较准确。 In view of the phenomenon that the calculation of variational level set algorithm is much larger and the speed is too low in the process of image segmentation, this paper proposed a new region-based hybrid nonconvex regularization active contour model based on some region-based active contour models. This model constructs a new energy functional which incorporates the LBF model having the property of local clustering of an image and geodesic active contour mo- del. By adding a nonconvex regularization term, they fasten the convergence speed of the contour curve, and can well pre- serve the shape of the region and protect the edge from oversmoothing. Thus, the minimum of the energy functional will be obtained by the typical finite difference method. Results of the simulation experiment on synthetic and medical images show that the proposed algorithm has quite fast convergence rate, accurate segmentation results and better robustness.
出处 《计算机科学》 CSCD 北大核心 2016年第4期303-307,共5页 Computer Science
基金 国家自然科学基金(61373055)资助
关键词 LBF模型 测地线模型 混合模型 非凸正则化 医学图像 LBF model, Geodesic model, Hybrid model, Nonconvex regularization, Medical image
  • 相关文献

参考文献18

  • 1Aubert G,Kornprobst P.Mathematical problems in image processing:partial differential equations and the calculus of variations[M].Springer,2006.
  • 2Kass M,Witkin A,Terzopoulos D.Snakes:Active contour mo-dels[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 3Osher S,Sethian J A.Fronts propagating with curvature-de-pendent speed:algorithms based on Hamilton-Jacobi formulations[J].Journal of Computational Physics,1988,79(1):12-49.
  • 4Mumford D,Shah J.Optimal approximations by piecewisesmooth functions and associated variational problems[J].Communications on Pure and Applied Mathematics,1989,42(5):577-685.
  • 5Caselles V,Catté F,Coll T,et al.A geometric model for active contours in image processing[J].Numerische Mathematik,1993,66(1):1-31.
  • 6Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 7Chan T F,Vese L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 8Vese L A,Chan T F.A multiphase level set framework forimage segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293.
  • 9Li C,Xu C,Gui C,et al.Level set evolution without re-initialization:a new variational formulation[C]∥ IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2005,1:430-436.
  • 10Li C,Xu C,Gui C,et al.Distance regularized level set evolution and its application to image segmentation[J].IEEE Transactions on Image Processing,2010,19(12):3243-3254.

同被引文献51

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部