期刊文献+

基于Adaboost-CSHG的特定类目标跟踪识别

Specific Target Tracking and Recognition Based on Adaboost-CSHG
下载PDF
导出
摘要 目标跟踪识别是计算机视觉领域的热点研究对象。首先采用基于Adaboost的目标检测算法,训练得到了特定类目标坦克模型的级联分类器,对图像中的坦克目标完成了"粗检测";通过构建类属超图(CSHG)模型,采取Adaboost与CSHG相结合的方式,有效滤除了大量虚警,实现了对坦克目标的"精检测",同时完成了对目标的跟踪;最后利用基于类属超图的目标识别原理对目标进行识别,实验结果表明该方法在简单背景和复杂背景图像条件下均具有可行性。 Target tracking and recognition is the hot spot research object of computer vision. Firstly a target detection algorithm based on Adaboost was adopted to train a specific target classifier, which only makes a rough detection on tank model. Via building CSHG model, lots of false alarm could be deleted by connecting Adaboost and CSHG,and then an accurate detection on tank model was made,in the meanwhile, tracking the target was finished . Finally a target re- cognition method based on CSHG was used to recognize the target. Experimental results show that the algorithm can work well in both simDle background and complicated background image conditions.
出处 《计算机科学》 CSCD 北大核心 2016年第4期318-320,F0003,共4页 Computer Science
基金 重庆市物联地下管网安全运行监管系统研制与示范(国家工信部ZX201426903)资助
关键词 ADABOOST 目标检测 类属超图 目标跟踪 目标识别 Adaboost,Target detection,CSHG,Target tracking,Target recognition
  • 相关文献

参考文献16

  • 1Liu Jian-jun.Research on Local Invariant Features Based Class Specific Hyper Graphs Learning and Object Recognition[D].Changsha:National University of Defense Technology,2010:110-112(in Chinese).
  • 2Li Jie.Human Detection Based on Adaboost Algorithm[D].Beijing:North China University of Technology,2010:17-20(in Chinese).
  • 3Ai Juan.Implement of Face Detection and Study of Eye Location[D].Shanghai:Fudan University,2008:25-26(in Chinese).
  • 4Sivic J,Russllb C,Efros A A,et al.Discovering Objects andTheir Location in Images [J].International Conference on Computer Vision,2005,1(1):872-877.
  • 5Csurka G,Dance C R,Fan L,et al.Visual categorization with bags of keypoints [C]∥Workshop on Statistical Learning in Computer Vision.ECCV,2004:1-22.
  • 6Torralba A,Fergus R,Weiss Y.Small Codes and Large Image Databases for Recognition [C]∥International Conference on Computer Vision.2008.
  • 7Bonev B,Escolano F,Lozano M A,et al.Constellations and the Unsupervised Learning of Graphs[J].Proceedings of the Graph-Based Representations in Pattern Recognition,2007,14(1):340-350.
  • 8Torsello A,Hancock E.Learning Shape-Classes Using a Mixture of Treeunions [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(6):954-967.
  • 9Jiang X,Munger A,Bunke H.On Median Graphs:Properties,Algorithms and Applications [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(10):1144-1151.
  • 10Ferrari V,Tuytelaara T,Van-Cool L.Simultaneous Object Re-cognition and Segmentation from Single or Multiple Model Views [J].International Journal of Computer Vision,2006,67(2):159-188.

二级参考文献44

  • 1夏胜平,张乐锋,虞华,张静,胡卫东,郁文贤.基于RSOM树模型的机器学习原理与算法研究[J].电子学报,2005,33(5):939-944. 被引量:11
  • 2夏胜平,刘建军,袁振涛,虞华,张乐锋,郁文贤.基于集群的增量分布式RSOM聚类方法[J].电子学报,2007,35(3):385-391. 被引量:5
  • 3Lowe D.Distinctive Image Features from Scale-invariant Key Points[J].International Journal of Computer Vision.2004,60(2):91-110.
  • 4Bay H,Tuytelaars T,Gool L V.SURF: Speeded Up Robust Features[C]//Proc.of ECCV’06.Graz,Austria: [s.n.],2006: 404-417.
  • 5Mikolajczyk K,Schmid C.A Performance Evaluation of Local Descriptors[J].IEEE Transactions on PAMI,2005,27(10): 1615-1630.
  • 6Li Feifei,Perona P.A Bayesian Hierarchical Model for Learning Natural Scene Categories[C]//Proc.of CVPR’05.San Diego,CA,USA: [s.n.],2005: 524-531.
  • 7Nowak E.Sampling Strategies for Bag-of-features Image Classification[C]//Proc.of ECCV’06.Graz,Austria: [s.n.],2006: 490-503.
  • 8Sivic J,Russell B C,Efros A A,et al.Discovering Objects and Their Location in Images[C]//Proc.of ICCV’05.Beijing,China: [s.n.],2005: 872-877.
  • 9Fan Chung.Spectral Graph Theory[C]//Proc.of CBMS Regional Conference on Mathematics.Washington D.C.,USA: IEEE Press,1997: 92.
  • 10Crandall D J,Huttenlocher D P.Weakly Supervised Learning of Part-based Spatial Models for Visual Object Recognition[C]//Proc.of ECCV’06.Graz,Austria: [s.n.],2006: 16-29.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部