期刊文献+

基于正交非负矩阵分解的K-means聚类算法研究 被引量:7

Orthogonal Non-negative Matrix Factorization for K-means Clustering
下载PDF
导出
摘要 为提高K-means聚类算法在高维数据下的聚类效果,提出了一种基于正交非负矩阵分解的K-means聚类算法。该算法对原始数据进行非负矩阵分解,并分别通过改进的Gram-Schmidt正交化和Householder正交化加入了正交约束,以保证低维特征的非负性,增加数据原型矩阵的正交性,然后进行K-means聚类。实验结果表明,基于IGSONMF和H-ONMF的K-means聚类算法在处理高维数据上具有更好的聚类效果。 The orthogonal NMF K-means clustering algorithm based on basic theory of NMF was proposed to improve the quality of K-means clustering in high-dimensional data.We presented orthogonal NMF algorithm,added orthogonal restraint to data prototype matrix from factorization with improved Gram-Schmidt and Householder orthogonalization separately,which both ensure non-negative of low-dimensional feature and enhance the orthogonality of matrix,and then made K-means clustering.Experimental results show that K-means clustering based on H-ONMF has better clustering results on high-dimensional data.
出处 《计算机科学》 CSCD 北大核心 2016年第5期204-208,共5页 Computer Science
基金 江苏省产学研联合创新资金项目(SBY201320423)资助
关键词 高维数据 非负矩阵分解 降维 正交NMF K-MEANS聚类 High-dimensional data NMF Dimension reduction Orthogonal NMF K-means clustering
  • 相关文献

参考文献16

  • 1Seung H S,Lee D D.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
  • 2Chu M,Plemmons R J.Nonnegative matrix factorization and applications[J].Image,2005,34:1-5.
  • 3LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 4Tang J,Ceng X,Peng B.New Methods of Data Clustering and Classification Based on NMF[C]∥2011 International Confe-rence on Business Computing and Global Informatization.IEEE Computer Society,2011:432-435.
  • 5Cichocki A,Amari S I,Zdunek R,et al.Extended SMART Algo-rithms for Non-negative Matrix Factorization[M]∥Artificial Intelligence and Soft Computing(ICAISC 2006).Springer Berlin Heidelberg,2006.
  • 6Ma Hui-fang,Zhao Wei-zhong,Tan Qing,et al.OrthogonalNonnegative Matrix Tri-factorization for Semi-supervised Document Co-clustering[C]∥Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD2010).2010:189-200.
  • 7Chen Y H,Wang L J,Dong M.Semi-supervised Document Clustering with Simultaneous Text Representation and Categorization[C]∥Buntine W,Grobelnik M,Mladeni D,eds.Machine Learning and Knowledge Discovery in Databases:Lecture Nates in Computer Science.Springer,Heidelberg.2009:211-226.
  • 8Stadlthanner K,Theis F J,Puntonet C G,et al.Extended sparse nonnegative matrix factorization[M]∥Computational Intelligence and Bioinspired Systems.Springer Berlin Heidelberg,2005:249-256.
  • 9Lee D D,Seung H S.Algorithms for Non-negative Matrix Factorization[J].Nips,2000,32(6):556-562.
  • 10Ding C,Tao L I,Peng W,et al.Orthogonal Nonnegative Matrix Tri-Factorizations For Clustering[M]∥Sigkdd.2006:126-135.

二级参考文献94

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2汪鹏.非负矩阵分解:数学的奇妙力量[J].计算机教育,2004(10):38-40. 被引量:10
  • 3LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 4Anderson C W,Kirby M.EEG subspace representations and feature selection for brain computer interfaces.Proceedings of the 1st IEEE Workshop on Computer Vision and Pattern Recognition for Human Computer Interaction,2003,475~483
  • 5Garrett G,Peterson D A,Anderson C W,et al.Comparison of linear and nonlinear methods for EEG signal classification.IEEE Transactions on Neural Systems and Rehabilitative Engineering,2003,11(2):141~144
  • 6Saito N,Larson B M,Benichou B.Sparsity vs.statistical independence from a best-basis viewpoint.In:Aldroubi A,Laine A F,Unser M A,eds.Proc SPIE Wavelet Applications in Signal and Image Processing VIII,2000,4119:474~486
  • 7Saul L K,Sha F,Lee D D.Statistical signal processing with nonnegativity constraints.Proceedings of the Eighth European Conference on Speech Communication and Technology,Geneva,Switzerland,2003,2:1001~1004
  • 8Liu W X,Zheng N N,Li X.Relative gradient speeding up additive updates for nonnegative matrix factorization.Neurocomputing,2004,57:493~499
  • 9Wild S M,Curry J,Dougherty A.Improving non-negative matrix factorizations through structured initialization.Pattern Recognition,2004,37:2217~2232
  • 10Plumbley M D.Conditions for non-negative independent component analysis.IEEE Signal Processing Letters,2002,9(6):177~180

共引文献152

同被引文献35

引证文献7

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部