期刊文献+

基于类心距离的模糊支持向量数据描述 被引量:3

Fuzzy Support Vector Data Description with Centers of Classes Distance
下载PDF
导出
摘要 针对传统的支持向量数据描述模型忽略了样本分布的重要性,提出了基于类心距离的模糊支持向量数据描述算法,并将其应用在UCI机器学习数据库的二分类和多分类数据集中。该算法利用样本到两类中心距离的比值赋予样本权重,增大贡献度大的样本的权重,降低贡献度小的样本的权重,突出样本之间的差异性,从而提高了算法的分类效果。实验表明,该算法具有比传统支持向量数据描述更好的学习能力和分类效果。 Support vector data description(SVDD)ignores the importance of sample distribution.This paper proposed a new method called fuzzy SVDD with centers of classes distance,and it had been applied on the UCI data sets.The algorithm uses ratio of the distance of sample to the centers of two classes to give each sample a weight.The important samples' weights should be increased and the others should be not,which can highlight the difference of samples.The results show that our algorithm has better performance than SVDD.
作者 王敏光 王喆
出处 《计算机科学》 CSCD 北大核心 2016年第5期230-233,242,共5页 Computer Science
基金 国家自然科学基金面上项目(61272198) 上海市教育委员会科研创新项目(14ZZ054) 中央高校基本科研业务费专项资金资助
关键词 模式识别 支持向量数据描述 权重 Pattern recognition Support vector data description Weight
  • 相关文献

参考文献13

  • 1Lee K,Kim D,Lee D,et al.Improving supportvector data de-scription using local density degree[J].Pattern Recognition,2005,38(10):1768-1771.
  • 2Cha M,Kim J S,Baek J-G.Density weighted support vector data description[J].Expert Systems with Applications,2014,41(7):3343-3350.
  • 3Kim S,Choi Y,Lee M.Deep Learning with Support Vector Data Description[J].Neurocomputing,2015,165:111-117.
  • 4Nguyen P,Tran D.Repulsive-SVDD Classification[C]∥19thPacific-Asia Conference on Advances in Knowledge Discovery and Data Mining.2015.
  • 5K L,DW K,KH L,et al.Density-Induced Support Vector Data Description[J].IEEE Transactions on Neural Networks,2007,18(1):284-289.
  • 6Guo S M,Chen L C,Tsai J S H.A boundary method for outlier detection based on support v-ector domain description[J].Pattern Recognition,2009,42(1):77-83.
  • 7Zhang Y,Chi Z,Li K.Fuzzy multi-class classifier based on support vector data description and improved PCM[J].Expert Systems with Applications,2009,36(5):8714-8718.
  • 8Hu Chen-long,Zhou Bo,Hu Jing-lu.Fast support vector data description training using edge detection on large datasets[C]∥2014 International Joint Conference on Neural Nerworks(IJCNN).IEEE,2014:2076-2182.
  • 9吴定海,张培林,王怀光,傅建平.基于多核支持向量数据描述的单类分类方法[J].计算机工程,2013,39(5):165-168. 被引量:4
  • 10高志华,贲可荣.基于多分类支持向量数据描述的噪声源识别研究[J].计算机科学,2012,39(11):233-236. 被引量:3

二级参考文献24

共引文献5

同被引文献30

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部