期刊文献+

无人机遥感技术在露天矿边坡测绘中的应用 被引量:29

Application of UAV remote sensing technology in open-pit slop mapping
下载PDF
导出
摘要 边坡体三维建模与可视化表达是露天矿边坡稳定性评价的前提。以发生过小面积滑坡的露天矿边坡为研究对象,利于机动灵活的低空无人机搭载消费型数码相机获取了边坡序列影像,依据计算机视觉原理生成了边坡体稠密三维点云,实现了边坡体三维数字模型制作。结果表明:该技术可快速构建露天矿边坡精细地形,有效降低了作业成本和劳动强度。此外,该方法克服了传统单点测量方式以点带面的局限性,生产的三维模型可全面表达边坡整体形体和局部细节特征,为正确评价边坡稳定性提供了科学依据,尤其适合存在潜在隐患的露天矿边坡动态变形监测。 3D modeling and visualization of the slope body is an essential prerequisite for objective evaluation of open-pit slop stability. Taking an open-pit slope where a small scale landslide happened as the study object, open-pit slope sequence images were first obtained from unmanned aerial vehicle(UAV)with a consumer-grade camera. And then, dense 3D point clouds were generated based on computer vision technology. Finally, high-resolution 3D digital models of open-pit slope were made. The experiment shows that the presented method can quickly construct an open-pit slope fine terrain,effectively reduce the operation cost and labor intensity. Moreover, due to this technology breaks the limitation of traditional method of single point measurement, reconstructed model can accurately expressed the global and local characteristics of open-pit slope, which can provide powerful support for the correct analysis and evaluation of slope stability, especially suitable for dynamic deformation monitoring of the potential risk open-pit slope.
出处 《红外与激光工程》 EI CSCD 北大核心 2016年第B05期111-114,共4页 Infrared and Laser Engineering
基金 中央高校基本科研业务费专项资金(ZY20140205)
关键词 无人机遥感技术 露天矿边坡 计算机视觉 三维数字模型 UAV remote sensing technology open-pit slope computer vision 3D digital model
  • 相关文献

参考文献9

  • 1Chen Jianping, Li Ke, Chang K J, et al. Open-pit mining geomorphic feature characterisation [J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 42: 76-86.
  • 2褚宏亮,殷跃平,曹峰,隋立春,李滨.大型崩滑灾害变形三维激光扫描监测技术研究[J].水文地质工程地质,2015,42(3):128-134. 被引量:49
  • 3kschara A, Kaufmann V, Klopschitz M, et al. Towards fully automatic photogrammetric reconstruction using digital images taken from UAVs [C]//Symposium of Commission VII of the ISPRS -100 Years, 2010: 65-70.
  • 4Lucieer A, Turner D, King, D H, et al. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds [J]. International Journal of Applied Earth Observation, 2014, 27: 53-62.
  • 5Verhoeven G, Doneus M, Briese C, et al. Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs [J]. Journal of Archaeological Science, 2012, 39: 2060-2070.
  • 6Niethammer U, James M R, Rothmund St et al. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results[J]. Engineering Geology, 2012, 128: 2-11.
  • 7Turner D, Lucieer A. Using a Micro Unmanned Aerial Vehicle (UAV) for ultra high resolution mapping and monitoring of landslide dynamics[C]// IGASS, 2013.
  • 8Snavely N. Scene reconstruction and visualization from internet photo collections [D]. Washington: University of Washington, 2008.
  • 9Furukawa Y, Ponce J. Accurate, dense, and robust multi- view stereopsis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362-1376.

二级参考文献10

共引文献48

同被引文献297

引证文献29

二级引证文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部