期刊文献+

液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究 被引量:3

Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy
下载PDF
导出
摘要 本文采用自由落体实验技术和格子玻尔兹曼计算方法研究了低重力条件下液态Fe-Sn-Si/Ge合金的相分离过程.实验发现,二种合金液滴在自由下落过程中均发生显著的液相分离,形成了壳核和弥散组织.当Fe-Sn-Si合金中的Si元素被等量的Ge元素替换后,壳核组织中富Fe区和富Sn区的分布次序会发生反转.计算表明,在液相分离过程中冷却速率、Marangoni对流和表面偏析对壳核构型的选择和弥散组织的形成起决定性作用. The liquid phase separation of small Fe-Sn-Si/Ge alloy droplets under reduced-gravity condition is investigated experimentally by free fall technique and theoretically by lattice Boltzmann method.In the drop tube experiments,the Fe-Sn-Si/Ge monotectic alloys are heated by induction heating in an ultrahigh vacuum chamber and further overheated to 200 K above their liquid temperatures for a few seconds.Finally,the molten alloy melt is ejected out from the small orifice of a quartz tube by high pressure jetting gas of He and dispersed into numerous tiny droplets,which are rapidly solidified during free fall in a protecting He gas environment.These droplets benefit from the combined advantages of high undercooling,containerless state and rapid cooling,which can provide an efficient way to study the liquid phase separation of high-temperature alloys in microgravity.In order to efficiently reproduce the dynamic process of phase separation inside drop tube equipment,the effects of surface segregation and Marangoni convection are introduced into the interaction potential of different liquids within lattice Boltzmann theory.Based on this modified model,the dynamic mechanism of phase separation can be sufficiently analyzed and the phase separation patterns can be realistically simulated.Experimental results demonstrate that conspicuous liquid phase separations have taken place for both Fe-Sn-Si and Fe-Sn-Ge alloy droplets and the corresponding morphologies are mainly characterized by core-shell and dispersed structures.The phase separation process can be modulated by the third-element addition.As the Si element of Fe-Sn-Si alloy is replaced by the Ge element with the same fraction,the distribution order of Fe-rich and Sn-rich zones is reversed within core-shell structure.A core-shell structure composed of a Fe-rich core and a Sn-rich shell is frequently observed in Fe-Sn-Si alloy droplets whereas the Fe-Sn-Ge alloy droplets tend to form a core-shell structure consisting of a Sn-rich core and a Fe-rich shell.Theoretical calculations show that the droplet cooling rate is closely related to droplet size:a smaller alloy droplet has a higher cooling rate.The liquid L2(Sn)phase always nucleates preferentially and forms tiny globules prior to solid αFe phase.Stokes motion can be greatly weakened in this experiment and the Marangoni migration dominates the globule movement in the process of liquid phase separation.Furthermore,the intensity of Marangoni convection within Fe-Sn-Ge alloy droplets is significantly stronger than that inside Fe-Sn-Si alloy droplets.Numerical simulations reveal that the cooling rate,Marangoni convection and surface segregation play the important roles in determining the selection of core-shell configurations and the formation of dispersed structures.Ultrahigh cooling rate contributes to forming the dispersed structures.When the Marangoni convection proceeds more drastically than the surface segregation,the minor liquid phase with a smaller surface free energy migrates to droplet center and occupies the interior of droplet,otherwise most of the minor phases appear around the periphery of droplet.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第10期247-255,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51271150 51371150 51571163 51327901)资助的课题~~
关键词 合金熔体 微重力 液相分离 壳核结构 alloy melts microgravity phase separation core-shell structure
  • 相关文献

参考文献26

  • 1Delfino G, Squarcini A 2014 Phys. Rev. Lett. 113 066101.
  • 2Cui L M, Li J, Zhang Y, Zhao L, Deng H, Huang K Q, Li H K, Zheng D N 2014 Chin. Phys. B 23 098501.
  • 3Sabin J, Bailey A E, Espinosa G, Frisken B J 2012 Phys. Rev. Lett. 109 195701.
  • 4Prisk T R, Pantalei C, Kaiser H, Sokol P E 2012 Phys. Rev. Lett. 109 075301.
  • 5Wu Y H, Wang W L, Wei B 2015 Comp. Mater. Sci. 103 179.
  • 6Patel A J, Rappl T J, Balsara N P 2011 Phys. Rev. Lett. 106 035702.
  • 7Zhang X M, Wang W L, Ruan Y, Wei B 2010 Chin. Phys. Lett. 27 026401.
  • 8Takahashi Y, Yamaoka K, Yamazaki Y, Miyazaki T, Fujiwara T 2013 Appl. Phys. Lett. 103 071909.
  • 9Roussel M, Talbot E, Pareige C, Nalini R P, Gourbilleau F, Pareige P 2013 Appl. Phys. Lett. 103 203109.
  • 10Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 034602 (in Chinese).

同被引文献81

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部