期刊文献+

矩阵转置切换在FFT处理器中的应用

The application of Array Transpose Commutator in FFT processor
原文传递
导出
摘要 针对MDC架构的FFT处理器中延迟单元使用量较多的情况,介绍了一种存储器矩阵转置切换(Array Transpose Commutator--ATC)方式用以实现FFT处理器数据的存储与切换或抽取功能,与传统的MDC结构相比,可以有效减少延迟单元的使用量。并且介绍了用存储器矩阵实现UWB-OFDM系统的128点FFT处理器的方法。该128点FFT处理器采用基-(8+16)算法,硬件上采用存储器矩阵+并行蝶8运算单元+R16SDF结构,并用硬件描述语言Verilog HDL进行RTL实现,用TSMC 90 nm标准工艺库进行Design Compiler综合,得到芯片内核面积为0.6056mm^2。在52MHz频率下工作可以满足UWB-OFDM系统的要求,内核功耗为5.9mW。在1.2V,25℃条件下,最大工作时钟可达200MHz。整个处理器的控制逻辑简单,数据吞吐率大,能够满足UWB系统的要求。 In view of the situation that base on the MDC architectures, FFT processors overuse delay units, this paper presents an Array Transpose Commutator --ATC way to realize the data storage and switch or extraction functions of FFT processors. Compared with the traditional MDC structures, the ATC can reduce the usage of delay units effectively. In this paper, how to use ATC to realize 128-point FFT processor in UWB - OFDM systems is also introduced. The 128-point FFT processor adopts the R-(8+16) algorithm, uses array transposes + parallel R-8 butterfly processing elements + R-16 SDF structures in hardware and realizes RTL implementation with Verilog HDL. The design is compiled by Design Compiler with 90nm TSMC technology. The kernel chip area is 0.6056 mm2. The kernel power consumption is 5.9 mW when the processor works at 52 MHz and it can meet the requirements of UWB-OFDM systems. Under the condition of 1.2 V, 25℃, the max working clock frequency can be up to 200 MHz. The control logic of the whole processor is simple, its data throughput rate is high, which can satisfy the requirements of UWB systems.
出处 《电子技术(上海)》 2016年第5期61-65,共5页 Electronic Technology
关键词 存储器矩阵 FFT处理器 RβSDF UWB array transpose, FFT processor, RβSDF, UWB
  • 相关文献

参考文献10

  • 1R.G.Lyons,Understanding Digital Signal Processing, Publishing House of Electronics Industry, China, pp.87-122, 2010.
  • 2PQ.Cheng. Digital Signal Processing. Publishing House of Tsinghua University, China, pp. 143-194, 2001.
  • 3K.-J. Yang, S.-H. Tsai, G.C.H. Chuang, MDC FFT/IFFT Processor With Variable Length for MIMO-OFDM Systems. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on. 21 (4): 720-731, 2013.
  • 4E.H.Wold, A.M. Despain. Pipeline and parallel- pipeline FFT processors for VLSI implementation. IEEE Trans. Comput., C-33(5):414-426, May 1984.
  • 5C. Vennila, G. Lakshminarayanan, Seok-Bum Ko Dynamic Partial Reconfigurable FFT for OFDM Based Communication Systems. Circuits Syst Signal Process 31:1049-1066,2012.
  • 6G.13i and E.V. Jones. A pipelined FFT processor for word-sequential data. IEEE Trans. Acoust., Speech, Signal Processing, 37(12): 1982-1985, Dec. 1989.
  • 7Lee, Jea Hack; Kim, Eun Ji; Myung Hoon Sunwoo. Low complexity FFT-IFFT processor for high- speed OFDM system using efficient multiplier scheduling. Circuits and Systems (ISCAS), 2012 IEEE International Symposium on. pp. 1520-1523 May 2012.
  • 8Song Nien Tang, Jni Wei Tsai, Tsin Yuan Chang.A 2.4-GS/s FFT Processor for OFDM-Based WPAN Applications [J]. IEEE Journal of Circuits and Systems, 2010, 57(6): 451-455.
  • 9高亚军,主编.基于FPGA的数学信号处理.北京:电子工业出版社,2012.02.
  • 10Nuo Li ,N.P. van der Meijs. A Radix 22 Based Parallel Pipeline FFT Processor for MB-OFDM UWB system. IEEE International SOC Conference. 2009: 383-386.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部