期刊文献+

Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways 被引量:1

Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways
原文传递
导出
摘要 The red palm weevil(RPW; Rhynchophorus ferrugineus) is spreading worldwide and severely harming many palm species. However, most studies on RPW focused on insect biology, and little information is available about the plant response to the attack. In the present experiment, we used metabolomics to study the alteration of the leaf metabolome of Phoenix canariensis at initial(1^(st) stage) or advanced(2^(nd) stage)attack by RPW compared with healthy(unattacked) plants.The leaf metabolome significantly varied among treatments. At the 1^(st) stage of attack, plants showed a reprogramming of carbohydrate and organic acid metabolism; in contrast, peptides and lipid metabolic pathways underwent more changes during the 2^(nd) than 1^(st) stage of attack. Enrichment metabolomics analysis indicated that RPW attack mostly affected a particular group of compounds rather than rearranging plant metabolic pathways. Some compounds selectively affected during the 1^(st) rather than 2^(nd) stage(e.g. phenylalanine; tryptophan; cellobiose;xylose; quinate; xylonite; idonate; and iso-threonate; cellobiotol and arbutine) are upstream events in the phenylpropanoid,terpenoid and alkaloid biosynthesis. These compounds could be designated as potential markers of initial RPW attack. However,further investigation is needed to determine efficient early screening methods of RPW attack based on the concentrations of these molecules. The red palm weevil(RPW; Rhynchophorus ferrugineus) is spreading worldwide and severely harming many palm species. However, most studies on RPW focused on insect biology, and little information is available about the plant response to the attack. In the present experiment, we used metabolomics to study the alteration of the leaf metabolome of Phoenix canariensis at initial(1^(st) stage) or advanced(2^(nd) stage)attack by RPW compared with healthy(unattacked) plants.The leaf metabolome significantly varied among treatments. At the 1^(st) stage of attack, plants showed a reprogramming of carbohydrate and organic acid metabolism; in contrast, peptides and lipid metabolic pathways underwent more changes during the 2^(nd) than 1^(st) stage of attack. Enrichment metabolomics analysis indicated that RPW attack mostly affected a particular group of compounds rather than rearranging plant metabolic pathways. Some compounds selectively affected during the 1^(st) rather than 2^(nd) stage(e.g. phenylalanine; tryptophan; cellobiose;xylose; quinate; xylonite; idonate; and iso-threonate; cellobiotol and arbutine) are upstream events in the phenylpropanoid,terpenoid and alkaloid biosynthesis. These compounds could be designated as potential markers of initial RPW attack. However,further investigation is needed to determine efficient early screening methods of RPW attack based on the concentrations of these molecules.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第4期388-396,共9页 植物学报(英文版)
基金 funded by the Project PROPALMA(D.M.25618/7301/11)by the Italian Ministry of Agricultural,Food and Forestry Policies(Mi PAAF)
关键词 Early detection Mediterranean environment metabolomics palms plant borer Early detection Mediterranean environment metabolomics palms plant borer
  • 相关文献

参考文献4

二级参考文献250

  • 1Qing-Yun Bu Liang Wu Shi-Hu Yang Jian-Min Wan.Cloning of a Potato Proteinase Inhibitor Gene PINII-2x from Diploid Potato(Solanum phurejia L.) and Transgenic Investigation of Its Potential to Confer Insect Resistance in Rice[J].Journal of Integrative Plant Biology,2006,48(6):732-739. 被引量:10
  • 2Fang Chen Qun Li Zuhua He.Proteomic Analysis of Rice Plasma Membrane-associated Proteins in Response to Chitooligosaccharide Elicitors[J].Journal of Integrative Plant Biology,2007,49(6):863-870. 被引量:12
  • 3Masclaux-Daubresse, C., DanieI-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., and Suzuki, A, (2010). Nitrogen uptake, assimilation and remobilisation in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105, 1141-1158.
  • 4Masumoto, C., Miyazawa, S.I., Ohkawa, H., Fukuda, T., Taniguchi, Y., Murayama, S., Kusano, M., Saito, K., Fukayama, H., and Miyao, M. (2010). Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl Acad. Sci. U S A. 107, 5226-5231.
  • 5Matt, R, Geiger, M., Walch-Liu, P., Engels, C., Krapp, A., and Stitt, M. (2001 a). Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant Cell Environ. 24, 1119-1137.
  • 6Matt, R, Geiger, M., Walch-Liu, R, Engels, C., Krapp, A., and Stitt, M. (2001b). The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: a majorimbalance between the rate of nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period. Plant Cell Environ. 24, 177-190.
  • 7Matt, P., Krapp, A., Haake, V., Mock, H.R, and Stitt, M. (2002). Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J. 30, 663-678.
  • 8Matt, P., Schurr, U., Krapp, A., and Stitt, M. (1998). Growth of tobacco in short day conditions leads to high starch, low sugars, altered diurnal changes of the nia transcript and low nitrate reductase activity, and an inhibition of amino acid synthesis. Planta. 207, 27-41.
  • 9Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D., Meyer, C., and Robaglia, C. (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc. Natl Acad, Sci. U S A. 99, 6422-6427.
  • 10Michalska, J., Zauber, H., Buchanan, B.B., Cejudo, F.J., and Geigenberger, R (2009). NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc. Natl Acad. Sci. U S A. 106, 9908-991.

共引文献96

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部