期刊文献+

Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs 被引量:1

Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
原文传递
导出
摘要 We show that a connected uniform hypergraph G is odd-bipartite if and only if G has the same Laplacian and signless Laplacian Z-eigenvalues. We obtain some bounds for the largest (signless) Laplacian Z-eigenvalue of a hypergraph. For a k-uniform hyperstar with d edges (2d ≥ k ≥ 3), we show that its largest (signless) Laplacian Z-eigenvalue is d. We show that a connected uniform hypergraph G is odd-bipartite if and only if G has the same Laplacian and signless Laplacian Z-eigenvalues. We obtain some bounds for the largest (signless) Laplacian Z-eigenvalue of a hypergraph. For a k-uniform hyperstar with d edges (2d ≥ k ≥ 3), we show that its largest (signless) Laplacian Z-eigenvalue is d.
机构地区 College of Science
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第3期511-520,共10页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements Foundation of China This work was supported by the National Natural Science (Grant Nos. 11371109, 11426075), the Natural Science Foundation of tteilongjiang Province (No. QC2014C001), :and the Fundamental Research Funds for the Central Universities
关键词 Hypergraph eigenvalue Laplacian tensor signless Laplaciantensor Z-eigenvalue Hypergraph eigenvalue, Laplacian tensor, signless Laplaciantensor, Z-eigenvalue
  • 相关文献

参考文献17

  • 1Bu C, Zhou J, Wei Y. E-cospectral hypergraphs and some hypergraphs determined by their spectra. Linear Algebra Appl, 2014, 459:397-403.
  • 2Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268-3292.
  • 3Cooper J, Dutle A. Computing hypermatrix spectra with the Poisson product formula. Linear Multilinear Algebra, 2015, 63:956-970.
  • 4Cvetkovic D, Rowlinson P, Simid S. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press, 2010.
  • 5Hu S, Qi L. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. Discrete Appl Math, 2014, 169: 140-151.
  • 6Hu S, Qi L, Xie J. The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra Appl, 2015, 469:1-27.
  • 7Khan M, Fan Y. On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs, arXiv: 1408.3303.
  • 8Lira L H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multisensor Adaptive Processing. 2005, 129-132.
  • 9Pearson K, Zhang T. On spectral hypergraph theory of the adjacency tensor. Graphs Combin, 2014, 30:1233-1248.
  • 10Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部