期刊文献+

Generalized Vandermonde tensors 被引量:1

Generalized Vandermonde tensors
原文传递
导出
摘要 We extend Vandermonde matrices to generalized Vandermonde tensors. We call an ruth order n-dimensional real tensor A = (Ai1i2…im) a type-1 generalized Vandermonde (GV) tensor, or GV1 tensor, if there exists a vector v = (v1, v2,.. , Vn)T such that Aili2...im = vi2+i3++im-m+l and call A , a type-2 (ruth order n dimensional) GV tensor, or GV2 tensor, if there exists an (m - 1)th order tensor B= (Bi1i2…im-1) such that Ai1i2…im= Bim-1i1i2…im In this paper, we mainly investigate the type-1 GV tensors including their products, their spectra, and their positivities. Applications of GV tensors are also introduced. We extend Vandermonde matrices to generalized Vandermonde tensors. We call an ruth order n-dimensional real tensor A = (Ai1i2…im) a type-1 generalized Vandermonde (GV) tensor, or GV1 tensor, if there exists a vector v = (v1, v2,.. , Vn)T such that Aili2...im = vi2+i3++im-m+l and call A , a type-2 (ruth order n dimensional) GV tensor, or GV2 tensor, if there exists an (m - 1)th order tensor B= (Bi1i2…im-1) such that Ai1i2…im= Bim-1i1i2…im In this paper, we mainly investigate the type-1 GV tensors including their products, their spectra, and their positivities. Applications of GV tensors are also introduced.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第3期593-603,共11页 中国高等学校学术文摘·数学(英文)
关键词 TENSOR SYMMETRIC HANKEL Vandermonde tensor generalizedVandermonde tensor Tensor, symmetric, Hankel, Vandermonde tensor, generalizedVandermonde tensor
  • 相关文献

参考文献13

  • 1Chen H, Chen Z, Qi L. Centrosymmetric, skew centrosymmetric and centrosymmetric Cauchy Tensors. 2014, arXiv: 1406.7409.
  • 2Chen H, Qi L. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. J Ind Manag Optim, 2015, 11: 1263-1274.
  • 3Comon P, Golub G, Lira L -H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl, 2008, 30:1254-1279.
  • 4Hu S, Huang Z, Ling C, Qi L. On determinants and eigenvalue theory of tensors. J Symbolic Comput, 2011, 50:508-531.
  • 5Hu S, Qi L. The E-eigenvectors of tensors. Linear Multlinear Algebra, 2014, 62: 1388- 1402.
  • 6Kaiman D. The generalized Vandermonde matrix. Math Mag, 1984, 57:15-21.
  • 7Lim L -H. Singular values and eigenvalues of tensors: A variational approach. In: Proc of 1st IEEE Int'l Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). 2005, 129-132.
  • 8Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324.
  • 9Qi L. Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. Commun Muth Sci, 2015, 13:113-125.
  • 10Qi L, Xu C, Xu Y. Nonnegative tensor factorization, completely positive tensors and an hierarchically elimination algorithm. 2014, 35:1227-1241.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部