期刊文献+

m, argest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths

m, argest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths
原文传递
导出
摘要 We investigate k-uniform loose paths. We show that the largest H- eigenvalues of their adjacency tensors, Laplacian tensors, and signless Laplacian tensors are computable. For a k-uniform loose path with length l≥ 3, we show that the largest H-eigenvalue of its adjacency tensor is ((1 + √-5)/2)2/k when = 3 and )λ(A) = 31/k when g = 4, respectively. For the case of l ≥ 5, we tighten the existing upper bound 2. We also show that the largest H-eigenvalue of its signless Laplacian tensor lies in the interval (2, 3) when l≥ 5. Finally, we investigate the largest H-eigenvalue of its Laplacian tensor when k is even and we tighten the upper bound 4. We investigate k-uniform loose paths. We show that the largest H- eigenvalues of their adjacency tensors, Laplacian tensors, and signless Laplacian tensors are computable. For a k-uniform loose path with length l≥ 3, we show that the largest H-eigenvalue of its adjacency tensor is ((1 + √-5)/2)2/k when = 3 and )λ(A) = 31/k when g = 4, respectively. For the case of l ≥ 5, we tighten the existing upper bound 2. We also show that the largest H-eigenvalue of its signless Laplacian tensor lies in the interval (2, 3) when l≥ 5. Finally, we investigate the largest H-eigenvalue of its Laplacian tensor when k is even and we tighten the upper bound 4.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第3期623-645,共23页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11271221) and the Specialized Research Fund for State Key Laboratories.
关键词 H-eigenvalue HYPERGRAPH adjacency tensor signless Laplaciantensor Laplacian tensor loose path H-eigenvalue, hypergraph, adjacency tensor, signless Laplaciantensor, Laplacian tensor, loose path
  • 相关文献

参考文献1

二级参考文献24

  • 1Brouwer A E, Haemers W H. Spectra of Graphs. Berlin: Springer, 2011.
  • 2Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438(2): 942-952.
  • 3Chang K C, Pearson K, Zhang T. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6:507 520.
  • 4Chang K C, Pearson K Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. School of Mathematical Sciences, Peking University, Beijing, China, Preprint, 2010.
  • 5Chang K C, Pearson K, Zhang T. Some variational principles of the Z-eigenvalues for nonnegative tensors. School of Mathematical Sciences, Peking University, Beijing, China, Preprint, 2011. http://www.mathinst.pku.edu.cn/data/upload/month_201112/ 2011-no44 _dp47rB.pdf.
  • 6Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370:284 294.
  • 7Chung F R K. Spectral Graph Theory. Providence: Amer Math Soe, 1997.
  • 8Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436(9): 3268-3292.
  • 9Cvetkovid D, Rowlinson P, Simid S K. Eigenvalue bounds for the signless Laplacian. Publ Inst Math (Beograd), 2007, 95(81): 11-27.
  • 10Fiedler M. Algebraic connectivity of graphs. Czech Math J, 1973, 98(23): 298 305.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部