期刊文献+

变稠度条件下仿生学前缘结状突起对压气机叶栅性能的影响 被引量:4

Influence of Bionic Leading-Edge Tubercles on Cascade Performance in a Compressor With Different Solidities
原文传递
导出
摘要 本文以某压气机平面叶栅为研究对象,采用数值计算的方法,在不同稠度条件下,分别研究仿生学前缘结状突起在零攻角和正攻角时对叶栅性能的影响。结果表明,零攻角工况时,各稠度条件下的仿生学叶栅总压损失系数都有一定的增大,性能恶化;8°正攻角工况时,波长等于9.6%c的前缘结状突起在各稠度条件下都能有效降低总压损失系数,改善叶栅性能,在设计稠度下(S=2)效果最显著,损失系数降低了约18.8%;仿生学前缘的作用机理:结状突起诱导产生的成对流向涡与通道中的分离流动相互作用,包括涡系结构之间的抵消作用和动量的输运,从而延缓分离,提高叶栅性能。 In this paper,a linear compressor cascade is selected as the baseline.Numerical simulations for different solidities are carried out to investigate the influence of the bionic leading-edge tubercles on the aerodynamic performance at incidence angles of 0° and 8°.Results indicate that bionic cascades for different solidities show an increase in total pressure loss coefficient at the incidence angle of 0°,which leads to the deterioration of cascade performance.The leading edge tubercle with the wavelength of 9.6%c effectively decrease the loss coefficient and enhance the cascade performance for different solidities at the incidence angle of 8°.Among these solidities,a remarkable decrease in the loss coefficient of 18.8% is achieved at the design solidity(S=2).The mechanism of bionic leading edge is concluded as followed:the interaction between tubercle-induced streamwise vortex pairs and separation flow in the passage,including the vortex interaction and momentum transportation,delays flow separation and enhances cascade performance.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第6期1181-1188,共8页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51406115) 高等学校博士学科点专项科研基金(No.20130073120101) 2011计划-先进航空发动机协同创新中心
关键词 轴流压气机叶栅 被动流动控制 仿生学前缘 流动分离 流向涡 axial compressor cascade passive flow control bionic leading edge flow separation streamwise vortex
  • 相关文献

参考文献12

  • 1Lord W K, MacMartin D G. Tillman T G. Flow Control Opportunities in Gas Turbine Engines [R]. AIAA 2000- 2234, 2000.
  • 2Fischer A, Riess W, Seume J R. Performance of Strongly Bowed Stators in a 4-Stage High Speed Compressor [R]. ASME GT2003-38392, 2003.
  • 3Dorfner C, Nicke E, Voss C. Axis-Asymmetric Pro- filed Endwall Design Using Multiobjective Optimiza- tion Linked with 3D-RANS-Flow-Simulations [R]. ASME GT2007-27268, 2007.
  • 4Dorfner C, Hergt A, Nicke E, et al. Advanced Nonax- isymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator--Part I: Principal Cascade Design and Compressor Application [J]. Journal of Turbomachinery, 2011, 133(2): 021026.
  • 5Hergt A, Meyer R, Engel K. Experimental Investigation of Flow Control in Compressor Cascade [R]. ASME GT2006- 90415, 2006.
  • 6Hergt A, Meyer R, Miiller M W, et al. Loss Reduction in Compressor Cascades by Means of Passive Flow Control ASME GT2008-50357. 2008.
  • 7Hergt A, Meyer R, Engel K. Effects of Vortex Genera- tor Application on the Performance of a Compressor Cas- cade[J]. Journal of Turbomachinery, 2013, 135(2): 021026.
  • 8Fish P E, Battle J M. Hydrodynamic Design of the Hump- back Whale Flipper [J]. Journal of Morphology, 1995, 225(1): 51-60.
  • 9Johari H, Henoch C W, Custodio D, et al. Effects of Leading-Edge Protuberances on Airfoil Performance [J]. AIAA Journal, 2007, 45(11): 2634 2642.
  • 10邹琳.波浪型结节改形风机翼型的气动性能研究[J].流体机械,2012,40(3):27-31. 被引量:4

二级参考文献5

共引文献3

同被引文献28

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部