期刊文献+

1.5T、3T和7T下MR EPT核心算法在非均匀组织中的误差比较 被引量:1

Comparison of the Reconstruction Errors of the Currently Popular Algorithm of MR EPT in an Inhomogeneous Phantom at 1.5, 3 and 7T
下载PDF
导出
摘要 本文比较了1.5T、3T和7T磁共振介电特性断层成像(MR EPT)核心算法在介电特性非均匀组织中的重建误差。首先,建立介电特性非均匀的电磁模型,仿真计算该模型在不同场强电磁场下的射频发射电磁场分布;其次,利用MR EPT核心算法计算得到成像区域组织介电特性分布;最后,比较不同场强非均匀组织介电特性重建结果的误差。结果表明,当场强为1.5T时,重建结果最大相对误差和平均相对误差都最大,而在7T场强下,重建结果的最大相对误差和平均相对误差都最小,不同场强下该算法的重建误差不同,重建误差随场强的增大而减小。 This work compared the reconstruction errors(REs) of the currently popular algorithm of MR-based electrical properties tomography(MR EPT) while applied in inhomogeneous object at 1.5, 3 and 7 T. The B1+ data of an inhomogeneous phantom were simulated at the three resonance frequencies. The currently popular algorithm of MR EPT was used to reconstruct the electrical property(EP) distributions inside the phantom. The absolute RE(a RE) and relative RE(r RE) maps in addition to the mean r REs were calculated to compare the REs occurring at different resonance frequencies. The maximums of maximum and mean r REs were observed at 1.5T, on the contrary, the minimums of maximum and mean r REs were observed at 7T. The REs varied with different resonance frequencies, and the REs decreased as the resonance frequency increased.
出处 《中国医疗设备》 2016年第5期15-18,共4页 China Medical Devices
基金 国家自然科学基金(61172034 61528102) 广东省自然科学基金(2015A030313234) 广东省省级科技计划项目(2015B020214006) 广州市科技计划项目(2014J4100160) 上海科技计划项目(15441907500)
关键词 磁共振介电特性成像 组织介电特性 非均匀模型 场强 误差分析 MR-based electrical properties tomography electrical properties inhomogeneous phantom resonance frequency errors analysis
  • 相关文献

参考文献24

  • 1Katscher U,Voigt T, Findeklee C,et al.Determination of electric conductivity and local SAR via B1 mapping[J].IEEE Trans Med Imaging,2009,28(9): 1365-1374.
  • 2Bulumulla SB,Lee SK,Yeo DT.Conductivity and permittivity imaging at 3.0T[J].Concepts Magn Reson Part B Magn Reson Eng,2012,41B(1):13-21.
  • 3Liu J,Zhang X,Schmitter S,et al.Gradient-based electrical properties tomography (gEPT):A robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging[J].Magn Reson Med,2015,74(3):634-646.
  • 4Surowiec AJ,Stuchly SS,Barr JR,et al.Dielectric properties of breast carcinoma and the surrounding tissues[J].IEEE Trans Biomed Eng, 1988,35(4):257-263.
  • 5Smith SR,Foster KR,Wolf GL.Dielectric properties of VX-2 carcinoma versus normal liver tissue[J].IEEE Trans Biomed Eng, 1986,33(5): 522-524.
  • 6Mehta EChand K,Narayanswamy D,et al.Microwave reflectometry as a novel diagnostic tool for detection of skin cancers[J].IEEE Trans lnstrum Meas,2006,5 5(4 ): 1309-1316.
  • 7Haacke E,Petropoulos L,Nilges E,et al.Extraction of conductivity and permittivity using magnetic resonance imaging[J].Phys Med Biol,1991,36(6):723-734.
  • 8Wen H.Noninvasive quantitative mapping of conductivity and dielectric distributions using RF wave propagation effects in high-field MRI[C].In Proceedings of SPIE,Medical Imaging 2003:Physics of Medical Imaging,2003,471-477.
  • 9Michel E,Hernandez D,Cho MH,et al.Denoising of B(1)(+) field maps for noise-robust image reconstruction in electrical properties tomography[J].Med Phys,2014,41 (10): 102304.
  • 10Van Lier A,Hoogduin J,Polders D,et al.Electrical conductivity imaging of brain tumours[C].In Proceedings of the 19th Annual Meeting of ISMRM,2011,4464.

二级参考文献3

共引文献12

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部