期刊文献+

Mn(Ⅰ)催化亚胺和炔烃脱氢偶联反应的机理研究 被引量:4

Mechanism Study of Mn(Ⅰ) Complex-catalyzed Imines and Alkynes Dehydrogenation Coupling Reaction
原文传递
导出
摘要 近年来随着过渡金属催化剂的发展和广泛使用,C—H键的活化成为了有机合成中的一大热点,尤其是在构建有机化合物C—C键中应用广泛.作为一种储量较大的廉价催化剂,Mn催化的C—H活化表现出巨大的应用价值和研究潜力.我们采用密度泛函理论(DFT),对1,4-二氧六环溶液中Mn活化C—H/N—H键实现[4+2]脱氢环化的反应机理进行了系统的研究.我们发现该反应的催化循环包括溴负离子辅助的催化剂引发、炔烃的插入、双键迁移成环、β-H消除释放产物异喹啉以及催化脱氢循环的C—H键活化等步骤.旨在深入理解Mn(I)活化C—H键脱氢气的具体过程,为更多Mn催化的C—H活化反应提供理论依据. With the development and widespread use of transition metal catalysts, C-H activation has become a hot topic in organic synthesis, especially in the construction of C-C bond of organic compounds. As an important and cheap catalyst, manganese complex has shown great potential for catalyzing C-H activation both in academic and industrial applications. In this paper, the mechanism of manganese-catalyzed dehydrogenative [4+2] annulation by C-H/N-H activation was investigated systematically with the aid of density functional theory (DFT) calculations in 1,4-dioxane solvent. In detail, we use M06-L/[SDD:6-311+G(d,p)(SMD)]//M06-L/[LANL2DZ:6-31G(d)] to examine the Gibbs free energy, structure and other properties of possible intermediates and transition states in this catalytic cycle. By comprehensive comparison and discussion, we obtained a favorable pathway consisting of five steps: (1) catalyst initiation occurred with the assistance of bromine anion rather than imide to form active catalyst; (2) alkyne inserted into the active catalyst to generate a seven-membered manganacycle after dissociation of a carbon monoxide; (3) double bond migration happened in this seven-membered manganacycle to form a product precursor; (4) the product precursor would dissociate by fl-H elimination and generated product isoquinoline and active Mn-H complex; (5) the active Mn-H complex was subsequently combined with an imine followed by dehydrogenative C-H activation to complete the whole catalytic cycle. In this context, the reason for the highly atom-economical C-H activation by direct dehydrogenation (eliminates the necessity for oxidants or additives) has been clarified by this mechanism. The present study was aimed at further understanding of Mn(I)-catalyzed dehydrogenative C-H activation, and provided more theoretical basis for future more Mn-catalyzed C-H activation.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2016年第5期422-428,共7页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.21325208 21172209 21361140372 21202006) 973计划(No.2012CB215306) 中央高校基础研究经费(Nos.WK2060190025 WK2060190040 FRF-TP-14-015A2) 中国科学院基金(No.KJCX2-EW-J02)资助~~
关键词 Mn催化 密度泛函理论(DFT) C—H活化 反应机理 manganese-catalyzed density functional theory (DFT) C-H activation mechanism
  • 相关文献

参考文献9

二级参考文献487

  • 1(a) Bott, G.; Field, L. D.; Stemhell, S. J. Am, Chem. Soc. 1980, 102, 5618; (b) Curran, D. P. Angew. Chem. lnt Ed. 1998, 37, 1174; (c) Clark, H. C.; Tsai, J. H. J. Organomet. Chem. 1967, 7, 515.
  • 2(a) Chen, Q.-Y.; Wu, S.-W. J. Chem. Soc. Perk. 1. 1989, 2385; (b) Urata, H.; Fuchikami, T. Tetrahedron Lett. 1991, 32, 91; (c) Cottet, F.; Schlosser, M. Eur. J. Org. Chem. 2002, 327; (d) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc. 2008, 130, 8600; (e) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A. Organometallics 2008, 27, 6233; (f) Oishi, M.; Kondo, H. Chem. Commun. 2009, 1909; (g) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
  • 3(a) Wang, X.; Truesdale, L.; Yu, J.-Q. d. Am. Chem. Soc. 2010, 132, 3648; (b) Ye, Y.; Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 14682.
  • 4(a) Mu, X.; Chen, S.; Zhen, X.; Liu, G.-S. Chem.-Eur. ,1. 2011, 17, 6039; (b) Chu, L.-L.; Qing, F.-L. ,I. Am. Chem. Soc. 2012, 134, 1298.
  • 5Liu, T.-F.; Shao, X.-X.; Wu, Y.-M.; Shen, Q.-L. Angew. Chem. Int. Ed. 2012, 51,540.
  • 6Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15330.
  • 7(a) Parsons, A. T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 9120; (b) Wang, X.; Ye, Y.-X.; Zhang, S.-N.; Feng, J.-J.; Xu, Y.; Zhang, Y.; Wang, J.-B. J. Am. Chem. Soc. 2011, 133, 16410.
  • 8(a) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875; (b) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 4986; (c) Pham, P. V.; MacMillan, D. W. C. Angew. Chem. lnt. Ed. 2011, 50, 6119; (d)Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
  • 9(a) Chu, L.-L.; Qing, F.-LI J. Am. Chem. Soc. 2010, 132, 7262; (b) Jiang, X.-L.; Chu, L.-L.; Qing, F.-L. J. Org. Chem. 2012, 77, 1251.
  • 10Zanardi, A.; Novikov, M. A.; Martin, E.; Benet-Buehholz, J.; Grushin, V. V. J.. Am. Chem. Soc. 2011, 133, 20901.

共引文献86

同被引文献14

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部