期刊文献+

一类具有临时免疫的时滞蠕虫传播模型的Hopf分支(英文)

Delayinduced Hopf bifurcation in a worm propagation model with partial immunization
下载PDF
导出
摘要 研究一类具有临时免疫的时滞SVEIR网络蠕虫传播模型的Hopf分支.首先,以蠕虫病毒的潜伏期时滞为分支参数,得到Hopf分支存在的充分条件.然后,借助于规范型理论和中心流形定理研究了模型Hopf分支的性质.最后,给出仿真示例,验证所得理论结果的正确性.仿真结果表明,延迟Hopf分支的产生可以有效控制蠕虫病毒在网络中的传播. This paper is devoted to Hopf bifurcation of a delayed SVEIR model with partial immunization that describes worms propagation on internet.Sufficient conditions for existence of Hopf bifurcation are obtained by considering the latent period time delay of worms as the bifurcation parameter.Properties of Hopf bifurcation are then investigated with the help of the normal form theory and the center manifold theorem.Numerical simulations show that worms propagation in internet can be controlled and eliminated by shortening the time delay.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2016年第3期279-285,共7页 Journal of Zhejiang University(Science Edition)
基金 Supported by Anhui Provincial Natural Science Foundation(1608085QF145,1608085QF151,KJ2014A006)
关键词 SVEIR模型 HOPF分支 时滞 稳定性 周期解 SVEIR model Hopf bifurcation time delay stability periodic solutions
  • 相关文献

参考文献18

  • 1MISHRA B K,PANDEY S K.Dynamic model of worms with vertical transmission in computer network[J].Applied Mathematics and Computation,2011,217(21):8438-8446.
  • 2ZHANG Z Z,YANG H Z.Stability and Hopf bifurcation in a delayed SEIRS worm model in computer network[J].Mathematical Problems in Engineering,2014,Article ID 319174:1-9.
  • 3MISHRA B K,KESHRI N.Mathematical model on the transmission of worms in wireless sensor network[J].Applied Mathematical Modelling,2013,37(6):4103-4111.
  • 4ZHANG Z Z,SI F S.Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network[J].Advances in Difference Equations,2014,295:1-14.
  • 5WANG F W,ZHANG Y K,WANG C G,et al.Stability analysis of a SEIQV epidemic model for rapid spreading worms[J].Computers and Security,2010,29(4):410-418.
  • 6PELTOMAKI M,OVASKA M,ALAVA M.Worm spreading with immunization:An interplay of spreading and immunity time scales[J].Physica A:Statistical Mechanics and Its Applications,2011,390(3):4152-4159.
  • 7SONG L P,HAN X,LIU D M,et al.Adaptive human behavior in a two-worm interaction model[J].Discrete Dynamics in Nature and Society,2012,Article ID 828246:1-13.
  • 8YAO Y,FENG X,YANG W,et al.Analysis of a delayedinternet worm propagation model with impulsive quarantine strategy[J].Mathematical Problems in Engineering,2014,Article ID 369360:1-18.
  • 9WANG F W,YANG Y,ZHAO D M,et al.A worm defending model with partial immunization and its stability analysis[J].Journal of Communications,2015,10(4):276-283.
  • 10WANG T,HU Z,LIAO F.Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response[J].Journal of Mathematical Analysis and Applications,2014,411(1):63-74.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部