期刊文献+

点到代数曲线最短距离的细分算法

A subdivision algorithm for computing the minimum distance between a point and an algebraic curve
下载PDF
导出
摘要 距离计算在计算机辅助几何设计与图形学领域有着广泛的应用.为了有效计算点到代数曲线的最短距离,提出了一种基于区间算术和区域细分的细分算法.利用四叉树数据结构对给定区域进行细分,用区间算术计算细分后所有像素点到给定点的距离区间,得到最小距离区间.该方法的优势在于在得到任意精度的点到代数曲线最短距离的同时,亦得到了该结果的最大误差限.为进一步提高速度,还对算法进行了改进. The distance computation has wide applications in computer-aided geometric design and graphics.A subdivision algorithm based on the interval arithmetic and quadtree data structure for computing the minimum distance between a point and an algebraic curve is proposed.A quadtree data structure is adopted during the subdivision of the give domain,and the interval arithmetic is used to compute the interval distances between the pixel on the algebraic curve and the given point.Compared with other methods,this method can obtain a close approximate value of the minimum distance between a point and an algebraic curve at any precision,while conducting the error estimation at the same time.An improved algorithm is also proposed to further accelerate the calculation speed.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2016年第3期286-291,共6页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(61572430 61272309 61472366)
关键词 代数曲线 最短距离 区间算术 细分算法 algebraic curves minimum distance interval arithmetic subdivision algorithm
  • 相关文献

参考文献7

二级参考文献71

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部