期刊文献+

Generalized model for laser-induced surface structure in metallic glass 被引量:1

Generalized model for laser-induced surface structure in metallic glass
下载PDF
导出
摘要 The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated.We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid.A generalized model is presented to describe the special morphology,which fits the experimental result well.It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples.The greater the viscosity is,the shorter the amplitude and the wavelength are. The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated.We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid.A generalized model is presented to describe the special morphology,which fits the experimental result well.It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples.The greater the viscosity is,the shorter the amplitude and the wavelength are.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期557-562,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.10572002,10732010,and 11332002)
关键词 metallic glasses pulse laser processing micro-nano scale surface structure VISCOSITY metallic glasses pulse laser processing micro-nano scale surface structure viscosity
  • 相关文献

参考文献29

  • 1Hwang T Y and Guo C 2012 Appl. Phys. Lett. 101 021901.
  • 2Xia Y Y, Wang Q P, Mei L M, Tan C Y, Yue S B, Xu B Z and Liu X D 1991 J. Phys. D: Appl. Phys. 24 1933.
  • 3Hohm S, Herzlieb M, Rosenfeld A, Kruger J and Bonse J 2013 Appl. Phys. Lett. 103 254101.
  • 4Clark S E and Emmony D C 1989 Phys. Rev. B 40 2031.
  • 5Cho H, Kim S and Ki H 2012 Acta Mater. 60 6237.
  • 6Jarmakani H, Maddox B, Wei C T, Kalantar D and Meyers M A 2010 Acta Mater. 58 4604.
  • 7Zhang J C, Liu Y W, Huang C L, Zhang Q Q, Yi Y, Zeng Y, Zhu X L, Fan Q P, Qian F, Wei L, Wang H B, Wu W D and Cao L F 2014 Chin. Phys. Lett. 31 124204.
  • 8Liang L X, Deng Y and Wang Y 2013 Chin. Phys. Lett. 30 108104.
  • 9Li Y G, Yang C S, Liu J Q and Sugiyama S 2011 Chin. Phys. Lett. 28 038101.
  • 10Wang H P, Ke S Y, Yang J, Wang Y and Yang Y 2014 Acta Phys. Sin. 63 098104 (in Chinese).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部