期刊文献+

一种改进Minhash的分布式协同过滤推荐算法 被引量:1

Collaborative filtering recommendation based on improved Minhash algorithm
下载PDF
导出
摘要 协同过滤推荐算法通过研究用户的喜好,实现从海量数据资源中为用户推荐其感兴趣的内容。衡量用户(资源)的相似性是协同过滤算法的核心内容,在数据量大的系统中,用户(资源)的相似性度量会面临准确性和计算复杂性等问题,影响到推荐效果。提出一种改进的协同过滤推荐算法,提取用户兴趣偏好的多值信息,运用改进Minhash算法度量用户相似性,并结合Mapreduce分布式计算,合理、高效地产生用户邻居,实现对用户的评分推荐。实验结果表明:改进算法能有效改善大数据集的推荐准确性并提高推荐效率,降低了推荐耗时。 Collaborative filtering recommendation algorithm recommends interesting content for users from a massive data resource, by studying the user’s preferences. Measuring similarity of user(resource)is the core of collaborative filtering algorithms. In the large volume of data systems, the accuracy and computational complexity are faced in similarity measuring, which thus affect the recommendation results. This paper proposes an improved collaborative filtering algorithm by extracting multi-valued information of user interest preferences, uses improved Minhash algorithm to measure user similarity, and combines with Mapreduce distributed computing, to generate neighbor rationally and effectively, and finishes user ratings recommendations. Experimental results show that the improved algorithm can improve the recommendation accuracy and efficiency, reduce the recommended time-consuming for large data sets.
作者 吴博文 陈曦
出处 《计算机工程与应用》 CSCD 北大核心 2016年第12期95-100,共6页 Computer Engineering and Applications
关键词 协同过滤 兴趣偏好 相似度计算 分布式计算 collaborative filtering interest preferences similarity calculation distributed computing
  • 相关文献

参考文献13

  • 1Gao Ming,Cao Fuyuan,Zhe Joshua.A cross cluster-basedcollaborative filtering method for recommendation[C]//Proceedings of the IEEE International Conference on Informationand Automation,Yinchuan,China,2013.
  • 2Bell R M,Koren Y.Improved neighborhood-based collaborativefiltering[C]//Proceedings of the 13th ACMSIGKDDInternational Conference on Knowledge Discovery andData Mining,California,2007:7-14.
  • 3贺银慧,陈端兵,陈勇,傅彦.一种结合共同邻居和用户评分信息的相似度算法[J].计算机科学,2010,37(9):184-186. 被引量:13
  • 4Resnick P.GroupLens:an open architecture for collaborativefiltering of net news[C]//Proc of the 1994 ACMConf on Computer Supported Cooperative Work,1994.
  • 5Broder A Z.On the resemblance and containment of documents[C]//Proceedings of the Compression and Complexityof Sequences,1997:21-29.
  • 6Elsayed T,Lin J.Pairwise document similarity in largecollections with MapReduce[C]//Proceedings of ACL-08:HLT,Columbus,Ohio,USA,2008.
  • 7Hsieh L C,Wu G L.Two-stage sparse gragh constructionusing Minhash on MapReduce[C]//2012 IEEE InternationalConference on Acoustics,Speech and Signal Processing(ICASSP),2012.
  • 8马小军,赵伟.改进相似度的分布式个性化推荐[J].计算机工程与应用,2014,50(4):126-131. 被引量:5
  • 9赵琴琴,鲁凯,王斌.SPCF:一种基于内存的传播式协同过滤推荐算法[J].计算机学报,2013,36(3):671-676. 被引量:49
  • 10杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87

二级参考文献35

共引文献169

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部