期刊文献+

基于Gabor小波和神经网络的布匹瑕疵检测 被引量:8

Fabric defect detection based on Gabor wavelet and neural network
下载PDF
导出
摘要 为了实现布匹表面瑕疵的在线视觉检测,利用Gabor小波函数与神经网络的结合,提出了一种有效提取Gabor滤波最优参数的方法。该方法通过离线构建Gabor小波神经网络,结合Levenberg-Marquardt算法优化得到最优解,重构无瑕疵的布匹图像,以削弱在线检测时布匹纹理对瑕疵检测的影响,从而能够于在线实时监测过程中凸显布匹瑕疵,最终从融合图像中得到瑕疵区域。通过对霉点、断经、油污、破洞四种常见的布匹瑕疵图像进行检测,表明该方法能够满足对瑕疵的实时分割要求。 To achieve the fabric defects in online visual detection, an effective method is proposed by combining the Gabor wavelet function and neural network to extract optimal Gabor filter parameters. Through building a Gabor wavelet neural network model, with the Levenberg-Marquardt algorithm to find the optimal solution, this method reconstructs the non-defect fabric image offline, to weaken the impact of the texture of the fabric defect detection during online testing, so that the defects will be highlighted during the online real-time testing, and then the defect area can be segmented from the fused image. The experimental results of four typical defect images including stain, broken warp, oil stain, and hole prove that this method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第12期231-234,共4页 Computer Engineering and Applications
基金 江苏高校优势学科建设工程资助项目(PAPD) 江苏省产学研前瞻性联合研究项目(No.BY2012056)
关键词 图像处理 瑕疵检测 GABOR小波 神经网络 image processing defect detection Gabor wavelet neural network
  • 相关文献

参考文献14

  • 1Mahajan P M,Kolhe S R,Patil P M.A review of automaticfabric defect detection techniques[J].Advances inComputational Research,2009,1(2):18-29.
  • 2Xie X.A review of recent advances in surface defectdetection using texture analysis techniques[J].ElectronicLetters on Computer Vision and Image Analysis,2008,7(3):1-22.
  • 3Ngan H Y T,Pang G K H,Yung N H C.Automatedfabric defect detection-a review[J].Image and VisionComputing,2011,29(7):442-458.
  • 4Abouelela A,Abbas H M,Eldeeb H,et al.Automated visionsystem for localizing structural defects in textile fabrics[J].Pattern Recognition Letters,2005,26(10):1435-1443.
  • 5Tajeripour F,Kabir E,Sheikhi A.Fabric defect detectionusing modified local binary patterns[J].EURASIP Journalon Advances in Signal Processing,2008(1):783-898.
  • 6Chan C,Pang G K H.Fabric defect detection by Fourieranalysis[J].IEEE Transactions on Industry Applications,2000,36(5):1267-1276.
  • 7Mak K L,Peng P,Yiu K F C.Fabric defect detectionusing multi-level tuned-matched Gabor filters[J].Journalof Industrial and Management Optimization,2012,8(2):325-341.
  • 8Zhang Y H,Yuen C W M,Wong W K,et al.An intelligentmodel for detecting and classifying color-texturedfabric defects using genetic algorithms and the Elmanneural network[J].Textile Research Journal,2011,81(17):1772-1787.
  • 9Bu H,Wang J,Huang X.Fabric defect detection based onmultiple fractal features and support vector data description[J].Engineering Applications of Artificial Intelligence,2009,22(2):224-235.
  • 10Mirmahdavi S A,Ahmadyfard A,Shahraki A A,et al.Anovel modeling of random textures using Fourier transformfor defect detection[C]//2013 UKSim 15th InternationalConference on Computer Modelling and Simulation(UKSim),2013:470-475.

二级参考文献14

  • 1黄潇玲,孙科,李子燊,祝晶晶,汤晓芸,王玉欣.表面疵点在线检测技术在非织造领域的应用[J].产业用纺织品,2009,27(5):39-43. 被引量:4
  • 2曾跃民,刘丽芳.基于计算机图象处理的非织造布质量检测与控制技术[J].非织造布,2001,9(3):37-40. 被引量:10
  • 3师一华,杨金锋.图像处理中改进的Gamma矫正方法[J].安阳工学院学报,2005,4(6):67-70. 被引量:7
  • 4韩润萍,孙苏榕,姜玲.基于Gabor滤波器组的织物疵点检测方法[J].计算机工程与应用,2007,43(7):211-214. 被引量:17
  • 5LIU J L,ZUO B Q,ZENG X Y. Nonwoven uniformity identification using wavelet texture analysis and LVQ neural network[J].Expert Systems With Applications,2010,(03):2241-2246.
  • 6STOJANOVIC R,MITROPULOS P,KOULAMAS C. Automated detection and neural classification of local defects in textile web[A].Manchester,UK,1999.647-651.
  • 7PAYVAND P,YOUSEFZADEH-CHIMACH M,LATIFI M. A note on neurofractal-based defect recognition and classification in nonwoven web images[J].Journal of the Textile Institute,2010,(01):46-51.
  • 8KUMAR A,PANG G. Defect detection in textured materials using Gabor filters[J].IEEE Transactions on Industry Applications,2002,(02):425-439.
  • 9TAN T N. Geometric transform invariant texture analysis[J].International Society for Optical Engineering,1995.475-485.
  • 10CHELLAPPA R,KASHYAP R L,MANJUNATH B S. Handbook of pattern recognition and computer vision[M].New Jersey:World Scientific Publishing Co Inc,1993.277-310.

共引文献5

同被引文献29

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部