期刊文献+

基于改进Markov模型软件测试策略

Software Testing Strategy Based on Improved Markov Model
下载PDF
导出
摘要 针对已有软件测试Markov模型与工程实践不符的情况,通过引入软件需求覆盖率改进Markov模型。在改进的Markov模型基础上,本文以软件测试过程中测试总代价最小为控制目标,采用交叉熵方法修正测试剖面,由优化测试剖面生成测试用例序列。仿真结果表明这种方法能够有效地降低软件测试总代价,是一种有效的软件测试方法。 A software testing method of optimizing testing strategy based on improved Markov model is presented in this paper. This method uses a new stochastic optimization method called Cross Entropy method. By iterative correcting of the testing profile in Markov model,we consider the minimization of testing cost and try to generate testing data automatically. The experimental results show that this optimization method is a promising option for tackling this problem. It can reduce the software testing cost effectively.
出处 《指挥控制与仿真》 2016年第3期108-112,共5页 Command Control & Simulation
关键词 软件测试 交叉熵法 覆盖率 software testing cross entropy method rate of coverage
  • 相关文献

参考文献2

二级参考文献16

  • 1Beizer B. Software Testing Techniques [M]. 2nd ed. New York: Van Nostr and Reinhold, 1990:168-203.
  • 2Myers G J. The Art of Software Testing [M]. 2nd ed. London: Wiley, 2004: 102-116.
  • 3Cai Kaiyuan. Optimal software testing and adaptive sot[tware testing in the context of software cybernetics [J]. Information and Software Technology, 2002, 44(2): 841- 855.
  • 4Cai Kaiyuan, Bo Gu, Hal Hu, et al. Adaptive software testing with fixed-memory feedback [J]. Journal of Systems and Software, 2007, 80(8) :1328-1348.
  • 5Cai Kaiyuan, Chen T Y, Li Yongchao, et al. Adaptive testing of software components [C] // Proc of the 20th ACM Syrup on Applied Computing. New York: ACM, 2005:1463-1469.
  • 6Cai Kaiyuan, Li Yongchao, Ning Weiyi, et al. Optimal and adaptive testing with cost constraints [C] //Proe of the 21st ACM Symp on Applied Computing. New York: ACM, 2006 : 71-77.
  • 7Hu Hal, Jiang Changhai, Cai Kaiyuan. Adaptive software testing in the context of an improved controlled markov [C] //Proe of Annual IEEE Int Computer Software and Applications Conf. Los Alamitos, CA: IEEE Computer Society, 2008:853-858.
  • 8Okamura H, Furumura H, Dohi T. BriekNet: On the effect of fault removal in software testing Bayesian reliability estimation approach [C] //Prnc of the 17th Int Syrup on Software Reliability Engineering. Los Alamitns, CA: IEEE Computer Society, 2006:247-255.
  • 9Derman C. Finite State Markovian Decision Processes [M]. New York: ACM, 1970.
  • 10Hu Hai, Wong W E, Jiang C H, et al. A case study of the recursive least squares estimation approach to adaptive testing for software components [C] //Proc of the 5th Int Conf on Quality Software. Los Alamitos, CAt IEEE Computer Society, 2005:135-141.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部