期刊文献+

Determination of the neutron skin thickness from interaction cross section and charge-changing cross section for B,C,N,O,F isotopes 被引量:3

Determination of the neutron skin thickness from interaction cross section and charge-changing cross section for B,C,N,O,F isotopes
下载PDF
导出
摘要 The effective neutron and proton root-meansquare radius of stable and unstable nuclei(^(12-15,17)B,^(12-20)C,^(14-21)N,^(16-24)O and ^(18-21,23-26)F) were deduced from the charge-changing cross section,σ_(cc),and the interaction cross sections,σ_I,by using a statistical abrasion-ablation model calculation.The extracted proton radii are in good agreement with the data from the Atomic Data and Nuclear Data Tables within the errors.Furthermore,we can observe that the neutron skin thickness increases monotonously with the increasing neutron number in these isotopes,which is consistent with the systematical trend of theoretical calculations. The effective neutron and proton root-meansquare radius of stable and unstable nuclei(^12-15,17B,^12-20C,^14-21N,^16-24O and ^18-21,23-26F) were deduced from the charge-changing cross section,σcc,and the interaction cross sections,σI,by using a statistical abrasion-ablation model calculation.The extracted proton radii are in good agreement with the data from the Atomic Data and Nuclear Data Tables within the errors.Furthermore,we can observe that the neutron skin thickness increases monotonously with the increasing neutron number in these isotopes,which is consistent with the systematical trend of theoretical calculations.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第3期153-158,共6页 核技术(英文)
基金 supported by the Major State Basic Research Development Program of China(No.2013CB834405) the National Natural Science Foundation of China(Nos.11421505,11475244 and 11175231)
关键词 中子皮厚度 作用截面 同位素 变化截面 电荷 均方根半径 测定 不稳定核 Unstable nuclei Statistical abrasion–ablation model Neutron skin thickness
  • 相关文献

参考文献1

二级参考文献25

  • 1Baccaro S, Busatto G, Citterio M, et al. Microelectron Relia- bility, 2012, 52: 65-2470.
  • 2Wang S, An Y W, Fang S X, et al. Sci Chin Phys Mech Astron, 2011, 54: S239-S244.
  • 3Silari M. Radiat Prot Dosim, 2011,146: 440-450.
  • 4Dinter H, Tesch K, Dworak D. Nucl Instrum Methods Phys Reaserch A, 1996a, 368: 265-272.
  • 5Dinter H, Tesch K, Dworak D. Nucl Instrum Methods Phys Research A, 1996b, 368: 273-277.
  • 6Agosteo S, Magistris M, Mereghetti A, et al. Nucl Instrum Methods Phys Research B, 2007, 265: 581-598.
  • 7Agosteo S, Magistris M, Mereghetti A, et al. Nucl Instrum Methods Phys Research B, 2008a, 266: 3406-3416.
  • 8Koprivnikar I and Schachinger E. Nucl Instrum Methods Phys Research A, 2002, 487: 571-584.
  • 9Cossairt J. Proc. of the Health Physics Society 2008: Pro- fessional Development School - Topics in Accelerator Health Physics, 2008, Oakland CA, USA.
  • 10Battistoni G, Muraro S, Sala P R, et al. AIP Conference Pro- ceeding, 2007, 896: 3149.

共引文献1

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部