期刊文献+

H-张量的判定及其应用 被引量:1

Criteria for H-tensors and its Application
下载PDF
导出
摘要 H-张量在自动控制系统的稳定性、多项式全局优化、医疗影像降噪等问题中具有重要的应用价值.但在实际中要判定一给定张量为H-张量比较困难.本文通过构造不同的正对角阵和运用不等式的放缩技巧,给出了H-张量一组新的实用判定方法.作为应用,给出了偶数阶实对称张量正定性的新判定条件.相应数值示例说明了结果的有效性. H-tensors play an important role in the stability study of automatic control systems, polynomial optimization problems, medical image de-noising problems, and so on. But it is not easy to determine whether a given tensor is an H-tensor or not in practice. In this paper, we give some practical criteria for H-tensors by constructing different positive diagonal matrices and applying some techniques of inequalities. As an application, some sufficient conditions for the positive definiteness of an even-order real symmetric tensor are given. Advantages of obtained results are illustrated by numerical examples.
作者 王峰 孙德淑
出处 《工程数学学报》 CSCD 北大核心 2016年第3期287-297,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11361074 11501141) 贵州省科学技术基金([2015]2073) 贵州省教育厅自然科学基金([2015]420) 贵州民族大学科研基金(15XRY004)~~
关键词 H-张量 实对称张量 正定性 不可约 非零元素链 H-tensors real symmetric tensors positive definiteness irreducible nonzero elements chain
  • 相关文献

参考文献15

  • 1Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors[J]. Communicationsin Mathematical Sciences, 2008, 6(2): 507-520.
  • 2Cartwright D, Sturmfels B. The number of eigenvalues of a tensor[J]. Linear Algebra and its Applications,2013, 438(2): 942-952.
  • 3DingWY, Qi L Q,Wei Y M. M-tensors and nonsingular M-tensors[J]. Linear Algebra and its Applications,2013, 439(10): 3264-3278.
  • 4Kolda T G, Mayo J R. Shifted power method for computing tensor eigenpairs[J]. SIAM Journal on MatrixAnalysis and Applications, 2011, 32(4): 1095-1124.
  • 5Liu Y J, Zhou G L, Ibrahim N F. An always convergent algorithm for the largest eigenvalue of an irreduciblenonnegative tensor[J]. Journal of Computational and Applied Mathematics, 2010, 235(1): 286-292.
  • 6Lim L H. Singular values and eigenvalues of tensors: a variational approach[C]// CAMSAP’05: Proceedingof the IEEE International Workshop on Computational Advances in Multi Sensor Adaptive Processing,2005: 129-132.
  • 7Li C Q, Wang F, Zhao J X, et al. Criterions for the positive definiteness of real supersymmetric tensors[J].Journal of Computational and Applied Mathematics, 2014, 255(1): 1-14.
  • 8Ng M, Qi L Q, Zhou G L. Finding the largest eigenvalue of a nonnegative tensor[J]. SIAM Journal onMatrix Analysis and Applications, 2009, 31(3): 1090-1099.
  • 9Qi L Q, Wang Y J, Wu Ed X. D-eigenvalues of diffusion kurtosis tensors[J]. Journal of Computational andApplied Mathematics, 2008, 221(1): 150-157.
  • 10Qi L Q. Eigenvalues of a real supersymmetric tensor[J]. Journal of Symbolic Computation, 2005, 40(6):1302-1324.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部