期刊文献+

基于GIF滤波分解的低照度图像增强算法 被引量:1

A Low Illumination Image Enhancement Algorithm Based on GIF Filtering Decomposition
下载PDF
导出
摘要 针对常见的对比度增强方法在处理低照度图像时不能兼顾提升图像亮度、对比度,和增强细节的问题,提出基于引导滤波器(guided image filter,GIF)的低照度图像增强算法。首先将输入图像从RGB颜色空间转换到HSV颜色空间;再利用GIF滤波器对图像进行图像分解,得到一个基本层和一个细节层;然后对基本层进行自适应Gamma校正,提高图像的整体亮度和对比度;再对细节层进行S型曲线增强,突出图像的局部细节;最后合成并恢复颜色,得到增强图像。将本文算法、全局Gamma校正、MSRCR 3种算法分别对低照度Bridge和Street图像进行处理,实验结果表明:本文算法能够在有效提升对比度的同时增强图像细节,提升了低照度图像的视觉效果。 The ordinary contrast enhancement methods in the low illumination images processing exist problems of not be able to improve the brightness, the contrast and details of images simultaneously, proposes a low illumination image enhancement algorithm based on guided image filter(GIF). The algorithm converts the input image from RGB color space to HSV color space, then decomposes the image into a base layer and a detail layer by a guided image filter, after that,conducts an adaptive Gamma correction on the base layer to improve the overall brightness and contrast of the image;enhances S-shape curve on the detail layer to highlight the local details of the image; finally reconstructs and restores the colors and obtains the enhanced image. A control experiment is conducted on 2 low illumination images(Bridge and Street)by the proposed method, global Gamma correction and MSRCR, respectively. The results indicate that the proposed method is able to improve the image contrast and details simultaneously, and enhances the visual quality of low illumination images.
出处 《湖南工业大学学报》 2016年第2期43-47,共5页 Journal of Hunan University of Technology
关键词 GIF滤波器 图像分解 自适应对比度增强 细节增强 guided image filter image decomposition adaptive contrast enhancement detail enhancement
  • 相关文献

参考文献4

二级参考文献58

  • 1牛少彰,伍宏涛,谢正程,刘歆,杨义先.抗打印扫描数字水印算法的鲁棒性[J].中山大学学报(自然科学版),2004,43(A02):1-4. 被引量:17
  • 2刘国军,唐降龙,黄剑华,刘家峰.基于模糊小波的图像对比度增强算法[J].电子学报,2005,33(4):643-646. 被引量:19
  • 3杨素敏,王嘉祯,彭德云,胡建理.基于HVS和小波变换的零水印数字图像算法[J].计算机工程与应用,2006,42(12):63-65. 被引量:9
  • 4M A Webster. Human colour perception and its adaptation[ J ]. Network:Computation in Neural Systems, 1996, 17 (4) : 587 - 634.
  • 5Funt B, Ciurea F, Mccann J. Retinex in MATLAB[ J]. Jourllal of Electronic Imaging, 2004,13( 1 ) :48 - 57.
  • 6Jobson DJ, Rahman Z, Woodell GA. A multiscale retinex for bridging the gap between color images and the human observation of scenes [J]. IEEE Transactions on Image Processing, 1997,6(7) :965 - 976.
  • 7Kimmel R, Elad M, Shaked D. A variational framework for Retinex[J]. International Journal of Computer Vision, 2003,52 (1) :7 - 23.
  • 8Laurence Meylan, Sabine Susstrunk. High dynamic range image rendering with a retinex-based ad;aptive filter[J]. IEEE. Transactions on Image Processing,2006,15(9) :2820 - 2830.
  • 9Li Tao, Vijayan K.Asari.A Robust Image Enhancement Technique for Improving Image Visual Quality in Shadowed Scenes [ A]. Proccedings of the 4th International Conference on Image and Video Retrieval [ C ]. Springer, Berlin, ALLEMAGNE, 2005, vol. 3568,395 - 404.
  • 10Wang Shoujue, Cao Yu, Huang Yi. A novel image restoration approach based on point location in high-dimension space geometry[ A]. Proceedings of International Conference on Neural Networks and Brain ( ICNN&B ' 05 ) [ C ]. IEEE Press, 2005, vol. 1,301 - 305.

共引文献65

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部