期刊文献+

Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction

Promoting effect of nitrogen doping on carbon nanotube-supported RuO_2 applied in the electrocatalytic oxygen evolution reaction
下载PDF
导出
摘要 RuO2 nanoparticles supported on multi-walled carbon nanotubes(CNTs) functionalized with oxygen(OCNTs) and nitrogen(NCNTs) were employed for the oxygen evolution reaction(OER) in 0.1 M KOH.The catalysts were synthesized by metal-organic chemical vapor deposition using ruthenium carbonyl(Ru3(CO)(12)) as Ru precursor. The obtained RuO2/OCNT and RuO2/NCNT composites were characterized using TEM, H2-TPR, XRD and XPS in order probe structure–activity correlations, particularly, the effect of the different surface functional groups on the electrochemical OER performance. The electrocatalytic activity and stability of the catalysts with mean RuO2 particle sizes of 13–14 nm was evaluated by linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry, showing that the generation of nitrogen-containing functional groups on CNTs was beneficial for both OER activity and stability. In the presence of RuO2, carbon corrosion was found to be significantly less severe. RuO2 nanoparticles supported on multi-walled carbon nanotubes(CNTs) functionalized with oxygen(OCNTs) and nitrogen(NCNTs) were employed for the oxygen evolution reaction(OER) in 0.1 M KOH.The catalysts were synthesized by metal-organic chemical vapor deposition using ruthenium carbonyl(Ru3(CO)(12)) as Ru precursor. The obtained RuO2/OCNT and RuO2/NCNT composites were characterized using TEM, H2-TPR, XRD and XPS in order probe structure–activity correlations, particularly, the effect of the different surface functional groups on the electrochemical OER performance. The electrocatalytic activity and stability of the catalysts with mean RuO2 particle sizes of 13–14 nm was evaluated by linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry, showing that the generation of nitrogen-containing functional groups on CNTs was beneficial for both OER activity and stability. In the presence of RuO2, carbon corrosion was found to be significantly less severe.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期280-286,共7页 能源化学(英文版)
基金 the IMPRS-Sur Mat of the Max Planck Society for a research grant
关键词 Ruthenium dioxide Chemical vapor deposition Nitrogen-doped carbon nanotubes Oxygen evolution reaction Ruthenium dioxide Chemical vapor deposition Nitrogen-doped carbon nanotubes Oxygen evolution reaction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部