摘要
在现有单体建筑空调负荷预测的研究基础之上,分析区域建筑群实时空调负荷的特点,确定了区域建筑群实时空调负荷的影响因子,并对武汉某区域能源站的逐时空调负荷进行了预测。将室外气象参数、不同功能建筑的影响因素作为输入端,把25 d的历史数据作为样本参数进行训练,并对预测日24 h的空调负荷进行预测,将工作日和周末的负荷预测结果进行了对比分析,发现负荷预测值与实际值较吻合,可以作为其他区域能源站的参考。
Upon on the existing research on the prediction of air conditioning load,this article do research on the characteristics of hourly air conditioning load in district buildings. Influencing factors are determined and hourly air conditioning load in district energy station of Wuhan is forecasted. Inputing the outdoor meteorological parameters and the influence factors of different buildings,the historical data of 35 days are trained as the sample parameters. Then,the air conditioning load of next 24 hours are predicted. The results ofprediction in air conditioning load on weekdays and weekends are analyzed. It is concluded that the forecasting results fit well with the theoretical results. The result can be used as the data base and guidance method of other district energy stations.
出处
《建筑热能通风空调》
2016年第5期35-38,共4页
Building Energy & Environment
关键词
区域建筑群
空调负荷
实时预测
人工神经网络
影响因素
district buildings
air conditioning load
hourly forecasting
artificial neural networks
influencing factors