期刊文献+

复杂场景下基于动态纹理的运动分割和背景估计方法 被引量:1

Motion segmentation and background estimation method based on dynamic texture in complex scenes
下载PDF
导出
摘要 针对现有的运动分割和背景估计方法无法分割停止运动的对象、不适用于复杂动态场景等不足,首先提出一种基于动态纹理(DT)的背景-前景混合模型(FBM),实现动态场景下前景和背景的联合表示。FBM包括一组关于位置的DT成份和一组全局DT成份,前者用于模拟本地背景运动,后者用于模拟持续性的前景运动。其次,提出一种可学习FBM参数的EM算法及变分近似策略,使得FBM在不需要人工选择阈值和不需要单独训练视频的前提下,实现多种运动复杂场景下的前景运动分割,并检测出停止运动的对象。仿真实验结果表明,与当前最新的运动分割和背景估计方法相比,该方法可显著提升背景估计和运动分割的精度。 Since the available motion segmentation and background estimation method can′t segment the static object,and is unsuitable for complex dynamic scenes,a foreground-background hybrid model(FBM)based on dynamic texture(DT)is proposed to realize the union expression of background and foreground in dynamic scenes. The FBM is composed of a set DT components about location and a set global DT components. The former is used to simulate the local background motion,and the latter is used to simulate the persistent foreground motion. The EM algorithm for learning FBM parameters and variation approximation strategy are proposed,which can realize the foreground motion segmentation in various moving complex scenes and detect the static object while FBM needn′t threshold artificial selection and individually training video. The simulation experiment results show that,in comparison with the latest motion segmentation and background estimation method,the proposed method can significantly improve the accuracy of background estimation and motion segmentation.
作者 夏蕾 罗佳
出处 《现代电子技术》 北大核心 2016年第11期63-69,共7页 Modern Electronics Technique
基金 国家自然科学基金(61273072)
关键词 运动分割 背景估计 动态纹理 EM算法 阈值 分割精度 motion segmentation background estimation dynamic texture EM algorithm threshold segmentation accuracy
  • 相关文献

参考文献19

  • 1赵谦,周勇,侯媛彬,刘树林.一种自适应码书模型背景更新算法[J].电视技术,2013,37(13):186-190. 被引量:1
  • 2HAINES T S F,XIANG T.Background subtraction with Dirichlet process mixture models[J].IEEE transactions on pattern analysis and machine intelligence,2014,36(4):670-683.
  • 3KOLEINI M,AHMADZADEH M R,SADRI S.A new efficient method to characterize dynamic textures based on a twophase texture and dynamism analysis[J].Pattern recognition letters,2014,45(2):217-225.
  • 4SHU G,DEHGHAN A,SHAH M.Improving an object detector and extracting regions using superpixels[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition.Portland:IEEE,2013:3721-3727.
  • 5KIM W,KIM C.Background subtraction for dynamic texture scenes using fuzzy color histograms[J].IEEE signal processing letters,2012,19(3):127-130.
  • 6MUMTAZ A,COVIELLO E,LANCKRIET G R G,et al.Clustering dynamic textures with the hierarchical em algorithm for modeling video[J].IEEE transactions on pattern analysis and machine intelligence,2013,35(7):1606-1621.
  • 7WANG S J,YAN W J,LI X,et al.Micro-expression recognition using dynamic textures on tensor independent color space[C]//Proceedings of 2014 22nd International Conference on Pattern Recognition.Stockholm,Sweden:IEEE,2014:4678-4683.
  • 8CHAN A B,VASCONCELOS N.Modeling,clustering,and segmenting video with mixtures of dynamic textures[J].IEEE transactions on pattern analysis and machine intelligence,2008,30(5):909-926.
  • 9CHAN A B,VASCONCELOS N.Counting people with low-level features and Bayesian regression[J].IEEE transactions on image processing,2012,21(4):2160-2177.
  • 10LIN L,XU Y,LIANG X,et al.Complex background subtraction by pursuing dynamic spatio-temporal models[J].IEEE transactions on image processing,2014,23(7):3191-3202.

二级参考文献11

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2徐正光,鲍东来,张利欣.基于递归的二值图像连通域像素标记算法[J].计算机工程,2006,32(24):186-188. 被引量:71
  • 3STAUFFER C, GRIMSON W. Learning patterns of activity using real time tracking [ J ]. IEEE Trans. Pattern Analysis and Machine Intelli- gence,2000,22(8) :747-767.
  • 4ELGAMMAL A, HARWOOD D, DAVIS L. Non-parametric model for background subtraction [ C ]//Proc. the 6th European Conference on Computer Vision, Part II. London :Springer-Verlag,2000:751-767.
  • 5KIM K,CHALIDABHONGSE T H,HARWOOD D,et al. Real-time fore- ground-background segmentation using codebook model [ J ]. Real-Time Imaging,2005,11 (3) : 167-256.
  • 6HE1KKILA M,PIETIKAINEN M. A texture-based method for modeling the background detecting moving objects[ J ]. IEEE Trans. Pattern Analy- sis and Machine Intelligence,2006,28(4 ) :656-662.
  • 7LIU Feng,GLEICHER M. Learning color and locality cues for moving ob- ject detection and segmentation[ C]//Proc. CVPR. Miami. [ S. 1. ] : IEEE Press,2009:320-327.
  • 8KUNTIMAD G, RANGANATH H S. Perfect image segmentation using pulse coupled neural networks[ J]. IEEE Trans. Neural Networks, 1999, 10(3 ) :591-598.
  • 9LIU Yazhou, YAO Hongxun, GAO Wen. Nonparametric background generation [ J ]. Journal of Visual Communication and Image Representa- tion ,2007,18 ( 3 ) :253-263.
  • 10徐成,田峥,李仁发.一种基于改进码本模型的快速运动检测算法[J].计算机研究与发展,2010,47(12):2149-2156. 被引量:15

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部