期刊文献+

切比雪夫多项式在代数信号处理中的应用 被引量:3

On Application of Chebyshev Polynomial in Algebraic Signal Processing
下载PDF
导出
摘要 针对切比雪夫多项式零根的插值方法,本文介绍了2个经典的解决切比雪夫插值问题的方案,给出了一种新的基于切比雪夫多项式零根插值的信号重构方法,对信号按照第二型切比雪夫多项式的零根进行非均匀采样,再由采样点得出重建信号,最后给出了这3种方法的仿真实验和误差分析. Interpolation plays an important role in modern applied mathematical community,among them,the related Chebyshev polynomial interpolation method received much interests.Given that interpolation based on the roots of Chebyshev polynomial has been one of the important contents of signal reconstruction and signal reconstruction has also been the important content of the ASP theory,we introduce two schemes of Chebyshev interpolation,and then give a new kind of signal reconstruction which based on the roots of Chebyshev polynomial(the interpolation is performed based on the Chebyshev nonuniform sampling points associated with the roots of the second kind of Chebyshev polynomial),at last we give the simulation and error analysis of the three methods.
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2016年第5期108-114,共7页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 移位 信号模型 切比雪夫多项式 插值公式 傅里叶变换 shift signal model Chebyshev polynomial interpolation formula Fourier transf
  • 相关文献

参考文献5

  • 1PUSCHEL M, MOURA J M F. Algebraic Signal Processing Theory: 1--D Nearest Neighbor Models [J]. IEEE Trans action on Acoustics Speech and Signal Processing, 2012, 60(5): 2247--2259.
  • 2NEAGOE V E. Chebyshev Nonuniform Sampling Cascaded with the Discrete Cosine Transform Optimum Interpolation [-J~ IEEE Transaction on Acoustics Speech and Signal Processing, 1990, 38(10) : 1812--1815.
  • 3WANG Z. Interpolation using Type I Discrete Cosine Transform [-J~. Electronics Letters, 1990, 26(15) .. 1170--1172,.
  • 4汪首坤,彭建敏,刘洋.基于切比雪夫最佳逼近的LVDT位移传感器信号处理[J].北京理工大学学报,2013,33(3):271-275. 被引量:5
  • 5傅翀,雷斌,韩冰,仇晓兰.基于切比雪夫多项式的HRWS星载SAR成像算法[J].国外电子测量技术,2015,34(8):40-46. 被引量:8

二级参考文献20

共引文献11

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部