期刊文献+

蛋白质-RNA相互作用预测研究进展

Research progress in protein-RNA interaction prediction
原文传递
导出
摘要 蛋白质-RNA相互作用(PRI)与基因表达调控等多种生物过程密切相关。目前一般从实验和计算机预测两方面研究PRI。虽然X射线晶体衍射和核磁共振等实验方法可获得蛋白质-RNA复合物结构,但这些方法具有耗时长与花费高等缺点,并且有些蛋白质-RNA复合物结晶很难获得。特别是,随着高通量测序技术的应用,有大量的PRI需要分析,实验方法已不能满足日益增长的分析需求。为此,现已发展了4类PRI预测方法,分别为结合RNA的蛋白质残基预测、结合蛋白质的RNA小片段预测、基于序列水平的PRI预测和基于结合位点水平的PRI预测。为使有关研究人员系统了解这些预测方法,该文对上述预测方法进行了评述,并探讨其进一步发展方向。 Protein-RNA interaction( PRI) is closely associated with many kinds of biological processes,such as gene expression regulation. Two strategies,experimental and computational identification,are generally used to study PRI. Experimental methods,such as X-ray crystal diffraction and nuclear magnetic resonance,can be used to investigate structures of protein-RNA complexes,but they are time-consuming and expensive. Furthermore,some complexes are hard to crystalize.Especially,with the application of high-throughput sequencing technology,a large number of potential PRIs are waiting to be analyzed,which has gone far beyond the capability of current experimental methods. To this end,four prediction methods have been developed for PRI,including RNA-binding protein residue prediction,protein-binding tiny RNA fragments prediction,sequence-based prediction of PRI,and binding site-based prediction of PRI. To update the related researchers on the methods of PRI prediction,and prediction models,here we reviewed these prediction models and offered some tips on how to improve related prediction methods.
出处 《军事医学》 CAS CSCD 北大核心 2016年第5期437-440,共4页 Military Medical Sciences
基金 国家自然科学基金资助项目(31471244 31271404 91540202)
关键词 生物信息学 蛋白质类 RNA 相互作用 预测模型 bioinformatics proteins RNA interaction prediction model
  • 相关文献

参考文献39

  • 1Glisovic T, Bachorik JL, Yong J, et al. RNA-binding proteins and post-transcriptional gene regulation [ J ]. FEBS Lett, 2008, 582(14) :1977 - 1986.
  • 2Zhao W, Liu M, Kirkwood KL. p38 stabilizes interleukin-6 mRNA via multiple AU-rich elements [ J ]. J Biol Chem, 2008, 283(4) :1778 - 1785.
  • 3Kishore S, Luber S, Zavolan M. Deciphering the role of RNA- binding proteins in the post-transcriptional control of gene expres- sion [ J ]. Brief Funet Genomies, 2011,9 (5 - 6 ) :391 - 404.
  • 4Babitzke P, Romeo T. CsrB sRNA family: sequestration of RNA- binding regulatory proteins [ J ]. Curr Opin Micmbiol, 2007,10 (2) :156-163.
  • 5Thorvaldsen JL, Weaver JR, Bartolomei MS. A YY1 bridge for X inactivation[ J]. Cell, 2011,146 ( 1 ) : 11 - 13.
  • 6Cirillo D, Agostini F, Tartaglia GG. Predictions of protein-RNA in- teractions[J]. WIREs Comput Mol Sci, 2013,3(2):161 -175.
  • 7Wang L, Brown SJ. BindN : a web-based tool for efficient predic- tion of DNA and RNA binding sites in amino acid sequences[ J]. Nucleic Acids Res, 2006,34 ( Web Server ) :W243 - W248.
  • 8Kumar M, Gromiha MM, Raghava GPS. Prediction of RNA binding sites in a protein using SVM and PSSM profile[ J]. Pro- teins, 2008,71 ( 1 ) : 189 - 194.
  • 9Wang L, Huang C, Yang MQ, et al. BindN + for accurate pre- diction of DNA and RNA-binding residues from protein sequence features [ J ]. BMC Syst Biol, 2010,4 ( Suppl 1 ) : S3.
  • 10Kumar M, Gromiha MM, Raghava GP. SVM based prediction of RNA-binding proteins using binding residues and evolutionary in- formation [ J ]. J Mol Recognit, 2011,24 (2) : 303 - 313.

二级参考文献17

  • 1Wassarman KM. 6S RNA: a regulator of transcription[ J]. Mol Microbiol, 2007,65 (6) : 1425 - 1431.
  • 2Babitzke P, Romeo T. CsrB sRNA family : sequestration of RNA- binding regulatory proteins [ J ]. Curr Opin Mierobiol, 2007,10 (2) :156 -163.
  • 3MeHugh CA, Russell P, Guttman M. Methods for comprehensive experimental identification of RNA-protein interactions [ J ]. Ge- nome Bio1,2014,15 ( 1 ) :203.
  • 4Wang Z, Tollervey J, Briese M, et al. CLIP: construction of eDNA libraries for high-throughput sequencing from RNAs cross- linked to proteins in vivo [ J ]. Methods,2009,48 ( 3 ) :287 - 293.
  • 5Konig J,Zarnaek K,Rot G, et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution [J]. Nat Struct Mol Biol, 2010,17(7) :909 -915.
  • 6Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP[ J]. Cell, 2010,141 ( 1 ) : 129 - 141.
  • 7Wang T, Xie Y, Xiao G. dCLIP: a computational approach for comparative CLIP-seq analyses[ J ]. Genome Biol,2014,15 ( 1 ) : Rll.
  • 8Langmead B, Trapnell C, Pop M, et al. Uhrafast and memory-effi- cient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009,10(3) :R25.
  • 9Yuan J, Wu W, Xie C, et al. NPInter v2.0 : an updated database of neRNA interactions [ DB ]. Nucleic Acids Res, 2014,42 ( 1 ) : D104 - D108.
  • 10Zhang A, Wassarman KM, Rosenow C, et al. Global analysis of small RNA and mRNA targets of Hfq[J]. Mol Microbiol,2003, 50(4) :1111 - 1124.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部