期刊文献+

Hilbert C*-模中融合框架的新定义及其系数的最小性

A new definition of fusion frames and the minimality of fusion frame coefficients in Hilbert C*-modules
下载PDF
导出
摘要 观察到Hilbert C*-模中融合框架原定义的不合理性,通过权重集的选取将其改进,得到融合框架的新定义并给出了新定义的等价形式.得到了Hilbert C*-模中融合框架系数的一个最小性质,作为该性质的应用,给出了融合框架去掉某个框架元素后不再成为融合框架的条件. An observation showed that the original definition of fusion frames in Hilbert C*-modules was unreasonable and was improved by a replacement of the weight set,and a new definition of fusion frames was thus obtained.An equivalent form of the new definition of fusion frames was also given.A minimality property of fusion frame coefficients was obtained,and a condition for one fusion frame to be a non-frame set after the deletion of one element from the fusion frame was given to illuminate the property.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期258-261,265,共5页 Journal of Lanzhou University(Natural Sciences)
基金 江西省自然科学基金项目(20151BAB201007) 江西省教育厅科学技术研究项目(GJJ151061) 国家自然科学基金项目(11461057 11561057)
关键词 HILBERT C*-模 融合框架 新定义 等价定义 最小性 Hilbert C*-module fusion frame new definition equivalent definition minimality
  • 相关文献

参考文献15

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fouri- er series [J]. Trans Amer Math Soc, 1952, 72(2): 341-366.
  • 2Daubechies I. Ten lectures on wavelets[M]. Philadelphia: SIAM, 1992: 53-105.
  • 3Christensen O. An introduction to frames and Riesz bases[M]. Boston: Birkhauser, 2002.
  • 4Christensen O. Frames, Riesz bases, and discrete Gabor/ wavelet expansions[J]. Bull Amer Math Soc, 2001, 38(3): 273-291.
  • 5Casazza P G, Kutyniok G, Lammers M C. Duality princi- ples in frame theory[J]. J Fourier Anal Appl, 2004, 10(4): 383-408.
  • 6Balan R. Equivalence relations and distances between Hil- bert frames[J]. Proc Amer Math Soc, 1999, 127(8): 2353- 2366.
  • 7相中启,贾琛琛.Christensen的改进结果在研究框架扰动中的应用[J].兰州大学学报(自然科学版),2012,48(4):115-118. 被引量:4
  • 8相中启,简辉华.Hilbert空间中连续框架扰动的新结果[J].兰州大学学报(自然科学版),2013,49(3):405-408. 被引量:4
  • 9Feichtinger H G, Strohmer T. Gabor analysis and algo- rithms: theory and applications[M]. Boston: Birkhauser, 1998: 295-452.
  • 10Feichtinger H G, Strohmer T. Advances in Gabor analy- sis[M]. Boston: Birkhauser, 2003: 153-195.

二级参考文献29

  • 1DUFFIN R J, SCHAEFFER A C. A class of nonhar- monic Fourier series[J]. Trans Amer Math Soc, 1952, 72(2): 341-366.
  • 2DAUBECHIES I, GROSSMANN A, MEYER Y. Painless nonorthogonal expansions[J]. J Math Phys, 1986, 27(5): 1 271-I 283.
  • 3DAUBECHIES I, GROSSMANN A. Frames in the Bargmann space of entire functions[J]. Comm Pure Appl Math,1988,41(2): 151-164.
  • 4CHRISTENSEN O. Perturbation of frames and appli- cations to Gabor frames: Gabor Analysis and A1- gorithms[C]//Appl Numer Harmon Anal. Boston: Birkhiuser, 1998: 193-209.
  • 5CHI:tISTENSEN Oo A Paley-Wiener theorem for frames[J]. Proc Amer Math Soc, 1995, 123(7): 2 199-2 202.
  • 6CASAZZA P G, CHRISTENSEN O. Perturbation of operators and applications to frame theory[J]. J Fourier Anal Appl, 1997, 3(5): 543-557.
  • 7YOUNG R M. An introduction to nonharmonic Fourier series[M]. New York: Academic Press, 1980: 184-190.
  • 8CHRISTENSEN Go An introduction to frames and Riesz bases[M]. Boston: BirkhEuser, 2002: 88-124.
  • 9CHRISTENSEN O. Frames and pseudo-inverses[J]. J Math Anal Appl,1995, 195(2): 401-414.
  • 10CHRISTENSEN O. Frames and the projection[J]. Appl Comput Anal, 1993, 1(1): 50-53.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部