期刊文献+

基于PCA和SVM的轨道不平顺状态识别 被引量:7

Track Irregularity State Recognition Based on PCA and SVM
下载PDF
导出
摘要 为快速识别轨道不平顺中存在的短波不平顺类型,提出基于主成分分析(PCA)和支持向量机(SVM)进行轨道不平顺状态识别的方法。首先提取轴箱加速度的特征参数,并采用主成分分析法对特征参数进行降维处理,提取出轨道不平顺的主元特征;然后构建支持向量机多分类器,以不同不平顺类型下轴箱加速度数据来验证模型的准确性;最后对实测数据进行轨道不平顺识别。通过对不同轨道不平顺下轴箱加速度的分析,结果表明该方法能够有效地实现一定区段内轨道不平顺类型的识别。 In order to identify the type of short wave irregularity in track irregularity,a method based on principal component analysis and support vector machine is proposed for the identification of track irregularity.Firstly,extracting the characteristic parameters of the axle box vibration acceleration,and then the main elements of the track irregularity are extracted by using principal component analysis to analyze the feature parameters.Secondly,the support vector machine multi-classifier is constructed to verify the accuracy of the model by the use of different types of axle box acceleration data.At last,the measured data are analyzed to identify the track irregularity.Results indicate that the proposed method can effectively realize the identification of the track irregularity in a certain range according to the analysis of the acceleration of the axle box with different track irregularity.
出处 《测控技术》 CSCD 2016年第5期25-28,36,共5页 Measurement & Control Technology
基金 国家自然科学基金项目(51478258) 上海市科委重点支撑项目(13510501300) 上海市研究生教育创新计划学位点引导布局与建设培育项目(13sc002) 上海工程技术大学研究生科研创新项目(14KY1007)
关键词 轨道不平顺 轴箱加速度 主成分分析(PCA) 支持向量机(SVM) track irregularity axle box acceleration principal component analysis(PCA) support vector machine(SVM)
  • 相关文献

参考文献10

二级参考文献69

  • 1林建辉,陈建政.振动测试中冲击隔离滤波器特性研究[J].西南交通大学学报,1995,30(1):82-85. 被引量:1
  • 2张小强,朱中梁,范平志,何明星.基于序列互相关特性和SVM的入侵检测研究[J].铁道学报,2007,29(3):113-117. 被引量:3
  • 3于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2007.
  • 4郑树彬.高速磁浮轨检信号的数字滤波方法研究[D].成都:西南交通大学,2007.
  • 5He Q, Yan R, Kong F, et al. Machine condition monitoring using principal component representations [J]. Mechanical Systems and Signal Processing, 2009,23(2) :446-466.
  • 6JolliHe I J. Principal component analysis[M]. New York : Springer, 1986 : 29-59,363-365.
  • 7Perlibakas V. Distance measures for PCA-based recognition [J ]. Pattern Recognition Letters, 2004, 25..711-724.
  • 8Malhi A, Gao R. PCA-based feature selection scheme for machine defect classification [J]. IEEE Transac- tion on Instrumentation and Measurement, 2004,53: 1517-1525.
  • 9Baydar N, Chen Q, Ball A, et al. Detection of incipi- ent tooth defect in helical gears using multivariate statistics[J]. Mechanical Systems and Signal Process- ing, 2001,151303-321.
  • 10Hu Qiao, He Zhengjia, Zhang Zhousuo, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble[J]. Mechanical Systems and Signal Processing, 2007,21: 688-705.

共引文献116

同被引文献40

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部