期刊文献+

污水处理过程的集合型监测方法研究 被引量:2

Research on Ensemble Monitoring Approach for Wastewater Treatment Process
下载PDF
导出
摘要 针对具有非线性、多变量特性的污水处理过程监测准确性有待提高问题,提出一种集合型EMDIFCM-KPCA过程监测方法。该方法首先利用经验模态分解方法对数据进行预处理,然后用改进的模糊C均值聚类对数据进行聚类,最后采用核主成分分析方法对污水处理过程中的异常状态进行监测。水处理基准模型(BSM1)过程监测实验结果表明,将EMD-IFCM-KPCA集合型方法应用于污水处理过程,监测准确性优于传统KPCA,IFCM-KPCA等方法。 To improve the monitoring accuracy of the wastewater treatment process containing the nonlinear and multivariate characteristics,an ensemble monitoring method of EMD-IFCM-KPCA is presented.Firstly,empirical mode decomposition(EMD) method is used for data preprocessing.Secondly,the preprocessed data are clustered by the improved fuzzy C-means(IFCM) clustering.Finally,kernel principal component analysis(KPCA) method is used to monitor the wastwater treatment process.The monitoring experimental results of benchmark model(BSMI) of water treatment process show that the monitoring accuracy of EMD-IFCM-KPCA method is superior to the conventional KPCA,IFCM-KPCA methods in the process of the wastewater treatment.
作者 李晨龙 杨青
出处 《测控技术》 CSCD 2016年第5期49-52,60,共5页 Measurement & Control Technology
基金 辽宁省科学技术计划项目(L2014083)
关键词 过程监测 污水处理过程 EMD-IFCM-KPCA 集合型方法 process monitoring wastewater treatment process EMD-IFCM-KPCA ensemble method
  • 相关文献

参考文献14

二级参考文献71

  • 1彭沛夫,林亚平,张桂芳,彭理莉.具有杂交、变异因子的自适应蚁群算法最优PID参数[J].计算机工程与应用,2006,42(6):88-91. 被引量:3
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:62
  • 3[1]Bakshi B. R.. Multiscale PCA with application to multivariate statistical process monitoring. A. I. Ch. E. Journal, 1998,44(7): 1596~ 1610.
  • 4[2]Mika S. , Sch Olkopf B. ,Smola A. J. ,Muller K.-R. ,Scholz M. , Ratsch G. Kernel PCA and de-noising in feature spaces. Advances in Neural Information Processing Systems, 1999,11: 536~ 542.
  • 5[3]Sch O lkopf B. , Smola A. J. , Müller K.. Nonlinear component analysis as a kernel eigenvalue problem.Neural Computation, 1998,10(5): 1299~ 1399.
  • 6[4]Spanjers H. ,Vanrolleghem P. A. , Nguyen K. , Vanhooren H. , Party G. G. Towards a simulation-benchmark for evaluating respirometry-based control strategies. Water Science and Technology, 1998,37 (12): 219~226.
  • 7CHOI S W, MORRIS J. Dynamic model-based batch process monitoring [ J ]. Chemical Engineering Science, 2008, 63(3): 622-636.
  • 8LEE J M, YOO C K. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis [ J ]. Journal of Biotechnology,2004,110(2) :119-136.
  • 9CHEN J, CHEN H H. On-line batch process monitoring using MHMT-based MPCA [ J ]. Chemical Engineering Science,2006,61 ( 10 ) : 3223-3239.
  • 10AGUADO D, FERRER A. Multivariate SPC of a sequencing batch reactor for wastewater treatment [ J ]. Chemometrics and Intelligent Laboratory Systems ,2007,85( 1 ) :82-93.

共引文献48

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部