期刊文献+

时变长度轴向移动绳横向受迫振动数值分析

Numerical Analysis of Transversely Forced Vibration for an Axially Travelling String with Time-Varying Length
下载PDF
导出
摘要 分别建立移动集中载荷和移动分布式载荷作用下时变长度轴向移动绳系统的物理模型,基于Leibniz法和Hamilton原理推导具有时变参数的横向受迫振动方程,Galerkin法将其离散处理为一系列非线性常微分方程组,改进的四阶Runge-Kutta用于求解不同Galerkin截断阶数的非线性常微分方程组,同时分析基于有限元法求解系统运动方程及Newmark-β数值计算的移动集中载荷下变长度轴向移动绳系统横向振动特性。两种方法数值分析吻合性及收敛性表明建立变长绳移系统模型可靠性及求解时变参数系统方法有效性,同时变长度轴向移动绳系统在不同情况下采用恰当的Galerkin截断阶数能到达更好收敛性及保证计算精度。 The physical models of an axially travelling string system with time- varying length under the action ofmoving concentrated load and moving distributed load are established. Two kinds of moving forced string models areconsidered with different means. The nonlinear transversely forced vibration equations with time varying parameters of thestring under different conditions are derived using the extended Hamilton’s principle and Leibniz’s rule, and discretizedusing different order Galerkin method into a series of ordinary differential equations. The modified 4th-order Runge-Kuttamethod is employed to solve the nonlinear transverse vibration equations by means of Matlab code. The numerical resultsalso obtained by the Newmark- β method based on finite element analysis. The effects of parameters changing with themoving loads are also simulated. The results demonstrate the correctness of the proposed physical and mathematical modelsand the effectiveness of the solutiion methods with time varying parameters. It also indicates that the proper choosing ofGalerkin truncation order can achieve better convergence and calculation accuracy in different situations.
出处 《噪声与振动控制》 CSCD 2016年第3期16-20,56,共6页 Noise and Vibration Control
基金 国家自然科学基金资助项目(51305115)
关键词 振动与波 时变长度移动绳 GALERKIN法 NEWMARK-Β法 移动载荷 横向受迫振动 vibration and wave travelling string with time- varying length Galerkin method Newmark- β method moving force transversely forced vibration
  • 相关文献

参考文献13

  • 1PAKDEMIRI M. Transverse vibration of an axiallyaccelerating string[J]. Journal of Sound and Vibration,1994, 169(2): 179-196.
  • 2SALIH N AKOUR. Dynamics of nonlinear beam onelastic foundation[C]. Proceedings of the World Congresson Engineering, 2010, 978-988-18210-7-2: 2078-0958.
  • 3ANSARI M, ESMAILZADEH E, YOUNESIAN D.Internal- external resonance of beams on non- linearviscoelastic foundation traversed by moving load[J].Nonlinear Dynamics, 2010 (61): 163-182.
  • 4ZHANG YE-WEI, ZANG JIAN, YANG TIAN-ZHI, et al.Vibration suppression of an axially moving string withtransverse wind loadings by a nonlinear energy sink[J].Mathematical Problems in Engineering, 2013, ArticleID 348042, 7 pages.
  • 5BAO JI-HU, ZHANG PENG, ZHU CHANG-MING, et al.Transverse vibration of flexible hoisting rope with timevaryinglength[J]. Journal of Mechanical Science andTechnology, 2014, 28 (2): 457-466.
  • 6CHEN E W, FERGUSON N S. Analysis of energydissipation in an elastic moving string with a viscousdamper at one end[J]. Journal of Sound and Vibration,2014: 2556-2570.
  • 7WU QUN, CHEN E W. Modified Runge Kutta method forsolving nonlinear vibration of axially travelling stringsystem[C]. The 21 st International Congress on Sound andVibration, 2014.
  • 8袁宏智,马建敏.移动载荷作用下斜拉桥结构的动态响应计算分析[J].噪声与振动控制,2014,34(3):148-154. 被引量:6
  • 9CZES-AW I BAJER, BART-OMIEJ DYNIEWICZ.Space-time approach to numerical analysis of a string witha moving mass[J]. International Journal for NumericalMethods in Engineering, 2008 (76): 1528-1543.
  • 10陈立群,吴俊.轴向运动粘弹性弦线的横向非线性动力学行为[J].工程力学,2005,22(4):48-51. 被引量:9

二级参考文献32

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部