期刊文献+

具广义功能反应函数非自治捕食系统的持久性和概周期问题

Persistence and almost periodic solutions of non autonomous predator prey system generalized functional response
下载PDF
导出
摘要 针对既有捕食关系,有竞争关系的三种群混合非自治捕食系统,将经典的Holling功能反应函数推广为广义功能反应函数,通过构造Liapunov函数,运用常微分方程定性理论知识,研究了系统的持续性和全局渐近稳定性,并进一步讨论了此系统的正概周期解的存在性和稳定性,得到了系统存在唯一、全局渐近稳定正概周期解的充分条件,对已有的结论进行了较大程度的推广. In this paper, the mixed model with predatoriness and competition of three species is discussed. Through intending the classical Holling functional response with general functional response and building up the Liapunov function, the globe asymptotically stable and durative of system are studied. Then the stability and existing of almost periodic solution are discussed, and obtain some su?cient conditions for a unique positively global asymptotical stability almost periodic solution and extend the current conclusion.
出处 《纯粹数学与应用数学》 2016年第3期243-251,共9页 Pure and Applied Mathematics
基金 国家自然科学基金(61305083)
关键词 功能反应函数 持续性 概周期解 functional response solution persistence almost periodic
  • 相关文献

参考文献7

二级参考文献28

  • 1程荣福,蔡淑云.一个稀疏效应下的Volterra系统的极限环[J].生物数学学报,2005,20(4):443-446. 被引量:19
  • 2程荣福,李辉.具有HollingⅢ型功能反应的捕食与被捕食收获模型的分支与极限环[J].东北师大学报(自然科学版),2007,39(1):17-21. 被引量:7
  • 3Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency [ J ]. Animal Ecol, 1975, 44:331 - 340.
  • 4DeAngelis D L, Goldstein K A, O' Neill R V. A model for trophic interaction[J]. Ecology, 1975, 56:881 -892.
  • 5Dobromir T D, Hristo V K. Complete mathematical analysis of predator - prey models with linear prey growth and Beddington - DeAngelis functional response[J]. Appl Math Comp, 2005,162(2) :523 -538.
  • 6Fan M, Kuang Y. Dynamics of a nonautonomous predator- prey system with the Beddington - DeAngelis functional response [ J]. Math Anal Appl, 2004,295 : 15 - 39.
  • 7Liu Q M, Zhou H Y. Existence and global attractivity of periodic solutions in n -species food -chain system with time delays [ J ]. Inequal Pure Appl Math, 2001, 4(5) :1 -17.
  • 8Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations[ M]. Berlin:Springer- Verlag, 1977.
  • 9陈广卿.证明极限环不存在的新方法极其应用.数学学报,1977,20(4):46-49.
  • 10CUI J. The effect of dispersal on permanence in a predator- prey population growth model[ J]. Comp Math Appl, 2002,44:1085 -1097.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部