期刊文献+

GdKP方程的最优系统和群不变解 被引量:2

Optimal system and group-invariant solutions for the GdKP equation
下载PDF
导出
摘要 利用经典李群方法对Gd KP方程进行Lie对称分析,求得该方程的Lie对称代数,及其相应的约化方程和最优系统.更进一步,作者求出了d KP方程的部分群不变解.该方法在物理中有广泛的应用. In this paper, the symmetries, similarity reductions and optimal system for the GdKP equation are studied by the classical Lie symmetry method. Furthermore, some group-invariant solutions for the dKP equation are obtained.
作者 李婷 沃维丰
机构地区 宁波大学数学系
出处 《纯粹数学与应用数学》 2016年第3期324-330,共7页 Pure and Applied Mathematics
基金 国家自然科学基金(11201249) 浙江省自然基金(LY16A010002) 宁波大学科研基金(XKL14D2040)
关键词 GdKP方程 李群方法 对称约化 最优系统 GdKP equation Lie group method similarity reductions optimal system
  • 相关文献

参考文献16

  • 1Bluman G W, Kumei S. Symmetries and Differential Equations [M]. New York: Springer, 1989.
  • 2Olver P. Applications of Lie Groups to Differential Equations [M]. 2nd ed. New York: Springer, 1993.
  • 3Clakson P A, Kruskal M D. New similarity reductions of the Boussinesq equations [J]. J. Math. Phys.,1989,30:2201.
  • 4Konopelchenko B, Martinez Alonso L, Ragnisco O. Theapproach for the dispersionless KP hierarchy[J]. J. Phys. A: Math. Gen., 2001,34:10209-10217.
  • 5Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersive media [J]. Sov.Phys. Dokl., 1970,15:539-41.
  • 6Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering (London Math.Society Lecture Note Series vol 194) [M]. Cambridge: Cambridge University Press, 1991.
  • 7Ramirez J, Romero J L, Tracina R. Some new solutions for the Derrida-Lebowitz-Speer-Spohnequation [J].Com. Nonl. Sci. Num. Simu., 2013,18:2388-2397.
  • 8Hu X R, Chen Y. Two-dimensional symmetry reduction of (2+1)-dimensional nonlinear Klein-Gordonequation [J]. Appl. Math. Comp., 2009,215:1141-1145.
  • 9Chou K S, Li G X. A note on optimal systems for the heat equation [J]. J. Math. Anal. Appl., 2001,261:741-751.
  • 10Chou K S, Qu C Z. Optimal systems and group classification of (1+1)-dimensional heat equation [J]. Acta.Appl. Math., 2004,83:257-287.

同被引文献22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部