期刊文献+

随机二阶锥规划问题的快速空间分解方法 被引量:1

A Fast Space Decomposition Method for Stochastic Second-Order Cone Programming Problem
下载PDF
导出
摘要 讨论了基于空间分解的随机二阶锥规划问题的样本均值近似方法(简称SAA方法),在适当的条件下,证明了SAA问题的解以概率1收敛到原问题的解,并且随着样本容量的增加收敛速度是指数的.基于分解理论,给出了SAA问题的超线性收敛算法框架. Sample average approximation(SAA)method based on the space decomposition method to solve stochastic second-order cone programming problem is discussed. Under some moderate conditions,the SAA solution converges to its true counterpart with probability approaching one and convergence is exponential fast with the increase of sample size.Based on the decomposition theory,a superlinear convergent algorithm frame is designed to solve the SAA problem.
作者 陆媛
出处 《沈阳大学学报(自然科学版)》 CAS 2016年第3期250-255,共6页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(11301347)
关键词 随机优化 二阶锥规划 样本均值近似 空间分解 超线性收敛 stochastic optimization second-order cone programming sample average approximation space decomposition superlinear convergent
  • 相关文献

参考文献3

二级参考文献16

  • 1X.X.HUANG,K.L.TEO,X.Q.YANG.Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs[J].Acta Mathematica Sinica,English Series,2006,22(5):1283-1296. 被引量:3
  • 2F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.
  • 3S. Dafermos, Equilibria and variational inequalities, Transportation Science, 1980, 14: 42-54.
  • 4M.Fukushima, Merit functions for variational inequality and complementarity problems, Nonlinear Optimization and Applications, G. Di Pillo and F. Giannessi eds, Plenum Press, New York, 1996.
  • 5P. Hartman and S. G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Mathematica, 1966, 115: 153-188.
  • 6G. Gurkan, A. Y. Ozge, and S. M. Robinson, Sample-path solution of stochastic variational in- equalities, Mathematical Programming, 1999, 84: 313-333.
  • 7H. Jiang and H. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE Transactions on Automatic Control, 2008, 53:1462-1475.
  • 8M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmet- ric variational inequality problems, Mathematical Programming, 1992, 53:99-110.
  • 9S. M. Robinson, Analysis of sample-path optimization, Mathematics of Operations Research, 1996, 21: 5130-528.
  • 10R. Y. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method, John Wiley & Sons, New York, 1993.

共引文献17

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部