期刊文献+

Study on the mechanism of NH3-selective catalytic reduction over CuCexZr1-x/TiO2

Study on the mechanism of NH3-selective catalytic reduction over CuCexZr1-x/TiO2
原文传递
导出
摘要 Copper-cerium-zirconium catalysts loaded on Ti02 prepared by a wet impregnation method were investigated for NHz-selective catalytic reduction (SCR) of NOx. The reaction mechanism was proposed on the basis of results from in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH3 is introduced, ammonia bonded to Lewis acid sites is more stable over CuCe0.25Zr0.75/TiO2 at high temperature, while Brensted acid sites are more important than Lewis acid sites at low temperature. For the NH3+NO+O2 co-adsorption, NH3 species occupy most of activity sites on CuCe0.25Zr0.75/TiO2 catalyst, and mainly exist in the forms of NH4+ (at low temperature) and NH3 coordinated (at high temperature), playing a crucial role in the NHz-SCR process. Two different reaction routes, the L-H mechanism at low temperature (〈 200℃) and the E-R mechanism at high temperature (〉200℃), are presented for the SCR reaction over C uCe0.25Zr0.75/TiO2 catalyst. Copper-cerium-zirconium catalysts loaded on Ti02 prepared by a wet impregnation method were investigated for NHz-selective catalytic reduction (SCR) of NOx. The reaction mechanism was proposed on the basis of results from in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH3 is introduced, ammonia bonded to Lewis acid sites is more stable over CuCe0.25Zr0.75/TiO2 at high temperature, while Brensted acid sites are more important than Lewis acid sites at low temperature. For the NH3+NO+O2 co-adsorption, NH3 species occupy most of activity sites on CuCe0.25Zr0.75/TiO2 catalyst, and mainly exist in the forms of NH4+ (at low temperature) and NH3 coordinated (at high temperature), playing a crucial role in the NHz-SCR process. Two different reaction routes, the L-H mechanism at low temperature (〈 200℃) and the E-R mechanism at high temperature (〉200℃), are presented for the SCR reaction over C uCe0.25Zr0.75/TiO2 catalyst.
出处 《Frontiers of Materials Science》 SCIE CSCD 2016年第2期211-223,共13页 材料学前沿(英文版)
关键词 CuCe0.25Zr0.75/TiO2 catalyst selective catalytic reduction (SCR) diffusereflectance infrared transform spectroscopy (DRIFT) reaction mechanism CuCe0.25Zr0.75/TiO2 catalyst selective catalytic reduction (SCR) diffusereflectance infrared transform spectroscopy (DRIFT) reaction mechanism
  • 相关文献

参考文献2

二级参考文献3

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部